Vertrauen ist der Anfang von Allem
Parkett, Laminat, Kork, Vinyl

angeboten

Hochkantlamellenparkett

Hochkantlamellenparkett, auch Industrieparkett genannt, ist eine Variante von Mosaikparkett. Es besteht aus etwa 8 mm breiten und hochkant liegenden Holzstäben („Lamellen“), die parallel zueinander auf einem Grundträger zusammengeleimt werden. Im Gegensatz zu Mosaikparkett sind die Stäbe aber nicht nach einer bestimmten Optik („rustikal/vital“, „natur/trend“, „select“) ausgewählt, sondern es können auch Astlöcher, Verfärbungen usw. auftreten, ohne dass dies als Mangel zu sehen ist. Geliefert und verlegt wird in vorgefertigten Verlegeeinheiten mit durchlaufenden Kopf- und Längsfugen. Die Nutzschicht ist 10 bis 25 mm stark. Die Parkettart gilt als robust und unempfindlich auch gegen stärkere mechanische Stöße. Es wird daher als belastbare Alternative in Kindergärten, Schulen, Gaststätten und Produktionsanlagen eingesetzt.[3]

Obwohl Hochkantlamellenparkett bei der Produktion weniger Ausschuss verursacht, ist es wider Erwarten oft teurer als vergleichbares Mosaikparkett.

Von einigen Parkettherstellern wird auch Fertigparkett in HKL (Hochkantlamellen)-Optik angeboten. Dieses Fertigparkett ist – im Gegensatz zu dem hoch aufbauenden „echten“ Industrieparkett – auch für Renovierungen geeignet.

Lamellenabmessungen:

Dicke: 10–25 mm, Breite: 8 mm, Länge: 120–165 mm. Feuchtegehalt bei Lieferung 9 ± 2 % bezogen auf die Darrmasse.

Hochkantlamellenparkett ist nicht mit Holzpflaster zu verwechseln.

Quelle: Wikipedia

Fertigparkett 

Fertigparkett ist ein bereits verlegefertig produzierter Bodenbelag aus Holz bzw. mit Holzoberfläche für Räume in geschlossenen Gebäuden.

Beim Fertigparkett sind die einzeln zu verlegenden Stäbe oder Planken schon fertig versiegelt oder geölt etc. Das Parkett aus Massivholz oder als Mehrschichtparkett (Edelholznutzschicht auf ein Trägersystem aus meist günstigerem Nadelholz oder Multiplex mit oder ohne Gegenzug aufgebracht) ist frei von Oberflächenfehlern und besonders passgenau verarbeitet. Der Vorteil liegt im Besonderen in der einfachen und kostengünstigen Montage auf der Baustelle, da schleifen, kitten und endbehandeln entfällt. Ein Fertigparkett ist wesentlich schneller „bewohnbar“. Einfache Mehrschichtparkettböden sind wegen der im Vergleich zum Stabparkett wesentlich dünneren Nutzschicht (meist nur 2–6 mm) auch günstiger als Stab- oder Mosaikparkett. Eine besonders hochwertige Variante ist scharfkantiges Massivparkett als Fertigparkett mit lackierten Oberflächen.

Ein abgenutzter oder verkratzter Parkettboden kann durch Abschleifen und anschließende Neulackierung renoviert werden. Bei Mehrschichtparkettboden ist dies wegen der geringen Dicke der Nutzschicht jedoch nur ein- oder zweimal möglich, da dann die oberste Holzschicht „durchgeschliffen“ ist und der Untergrund sichtbar wird.

Unterscheidungsmerkmale

Fertigparkett gibt es von mehreren Herstellern in verschiedenen Varianten, welche sich durch einige Kriterien voneinander unterscheiden.

Holzart

Parkette werden traditionell aus Eiche, Buche oder Nadelholz hergestellt. Es gibt jedoch auch Parkette aus anderen Hölzern wie Kirsche, Ahorn, Esche, Nussbaum, Birke oder Teak.

Die Holzarten unterscheiden sich neben dem Aussehen in ihrer Struktur und Festigkeit. Die Härte von Holzbelägen wird mit dem Brinell-Verfahren ermittelt. Dabei wird unter definierten Umgebungsvoraussetzungen eine Stahlkugel auf das Holz gedrückt. Deren Abdruck wird vermessen und gibt die Härte des Holzbelags wieder.

Sortierung

Die meisten Hersteller bieten ihre Parkette in unterschiedlich sorgfältiger Auslese an. Eine feinere Aussortierung von Holzstücken mit Fehlern und Astlöchern sorgt für ein gleichmäßigeres Aussehen des Bodenbelags. Werden die Holzstücke nicht aussortiert, bleibt ein urwüchsiges, rustikales Aussehen.

Schichtaufbau

Massivparkett als Fertigparkett ist aus einem massiven Stück Holz. Beim Mehrschichtparkett ist der Schichtaufbau ein wesentliches Qualitäts- und Unterscheidungsmerkmal. Die oberste Schicht ist immer die, wahlweise geölte oder lackierte, Echtholzschicht. Darunter können sich eine oder mehrere Träger- und Stabilitätsschichten befinden. Meist werden für diese Schichten Fichtenstäbe verwendet. An einigen Fertigparkettsorten ist eine Trittschalldämmung direkt als unterste Schicht angebracht, bei anderen ist eine separate Trittschalldämmung als Untergrund zu verlegen.

Verlegeweise

Ursprünglich wurde Mehrschichtparkett immer durch Anleimen der zusammenzusteckenden Nut und Feder stabilisiert und feuchtigkeitsfest gemacht. Seit einiger Zeit werden jedoch immer mehr Mehrschichtparkette zur leimlosen Verlegung und/oder mit diversen „Klick-Systemen“ zur einfacheren Montage angeboten. 2-schicht Fertigparkett ist schubfest zu verlegen, also zu kleben oder zu nageln.

Anmerkungen zur Verarbeitung

Fertigparkett kann teilweise, je nach Art, schwimmend (ohne am Unterboden befestigt zu werden) verlegt werden. Dabei ist, wie bei dem mit dem Untergrund fest verbundenen Fertigparkett, eine Dehnungsfuge zur Wand bzw. beim Übergang auf andere Bodenbeläge zu erstellen. Diese verhindert eine Wölbung des Bodenbelages bei Feuchtigkeitsänderung (Quellen und Schwinden).

Unterschied zu Laminat

Parkett, sowie auch Fertigparkett, besitzt immer zumindest eine aus Echtholz gefertigte oberste Schicht, während der preisgünstigere, Parkett nachahmende, Bodenbelag Laminat lediglich eine in Farbe und Struktur holzähnliche Kunststoffoberfläche besitzt.

Quelle : Wikipedia

Dielenboden

 

Alte Fußbodendiele aus Pitch Pine

Ein Dielenboden, auch Schiffboden oder Riemenboden, ist ein Holzfußboden aus Brettern, in Raumlängen oder variierenden Längen. Er ist neben dem Holzpflaster (auch Stöckelboden genannt) aus kurzen Stirnholz-Abschnitten die älteste Form des Holzbodens.

Eine spätere Entwicklung sind Parkettböden, die aus Holzstäben zusammengesetzt werden, die in der Regel kürzer als ein Meter sind und meist aus Hartholz mit umlaufender Nut oder mit gefräster Nut und Feder vorgefertigt werden.

Die Dielen

Dielen können aus jeder Holzsorte hergestellt werden, die sich in der gewünschten Breite rißfrei aufschneiden lässt. Im Gegensatz zu Brettern für den allgemeinen Bedarf wird das Rundholz bevorzugt im Riftschnitt aufgetrennt, so dass die Jahresringe des fertigen Dielenbretts vorwiegend senkrecht stehend verlaufen. Liegende Jahresringe können insbesondere bei schnellwachsendem Nadelholz dazu führen, dass sich stellenweise eine flach auslaufende, splittrige Holzschicht entlang des Verlaufs der Jahresringe von der Oberfläche des Fußbodens löst.[1]

Erwünscht ist trockenes und maßhaltiges Holz, um eine langfristige versatz- und fugenfreie Oberfläche zu erhalten.

Traditionell werden massive Dielen in Stärken von 21 bis etwa 40 mm und einer Breite ab 80 mm verwendet. (Schnittholz in einer Stärke von mehr als 40 mm wird nicht mehr als Brett, sondern als Bohle bezeichnet.) Ähnlich wie Parkettstäbe werden Dielenbretter heute meist mit ein- oder zweiseitig eingeschnittener Nut sowie herausgefräster Feder auf der jeweils gegenüberliegenden Seite gefertigt. Durch die Nut- und Federverbindung verteilen sich punktuelle Belastungen auf mehrere nebeneinanderliegende Dielen, so dass sich auch dünnere Bretter ab etwa 15 mm Stärke verwenden lassen. Sollten im verlegten Boden Fugen auftreten, so können diese bei gespundeten Brettern mit einer Kittmasse gefüllt oder mit Holzleisten (“Holzspliss”[2]ausgespant werden, ohne dass sich das Fugenmaterial später wieder löst, wie es bei historischen Dielen der Fall ist, die sich gegeneinander bewegen.

Die Größe der Dielen wird begrenzt durch Faktoren wie Stammlänge und -breite, Schwindverhalten des Holzes, Größe der Trockenkammer und den Transportmöglichkeiten. Möglich sind häufig Längen bis etwa 15 m und Breiten bis 60 cm. Besonders breite und lange Massivholzdielen werden als Schlossdielen bezeichnet. Hochwertige Holzböden werden oft durchgehend in Raumlänge verlegt.

Heute werden Dielen auch in der Art von Furnier- oder Brettschichtholz zwei- oder mehrschichtig verleimt und im Handel oft als Landhausdielen bezeichnet.

  • Bei der Fertigung entsteht kaum Verschnitt, da die Schichten vor dem flächigen Verleimen per Keilzinkenverbindung endlos aneinandergesetzt werden.
  • Durch die Verleimung von mehreren vorgetrockneten Schichten kann eine für Trag- und Nutzschichten jeweils passende Holzqualität ausgewählt werden. Dadurch ergibt sich ein sehr maßhaltiger Dielenboden.
  • Für die Sicht- und Nutzfläche wird ein festes und fehlerfreies Holz mit gleichmäßiger Maserung ausgewählt, während in den anderen Schichten Resthölzer verarbeitet werden können.
  • Die oberste Schicht sollte wenigstens 8 mm stark sein, damit der Holzfußboden zur Renovierung einige Male abgeschliffen werden kann, ohne die Nutzschicht durchzuschleifen.

Als Nadelholz werden meist Kiefer, Lärche oder Fichte bzw. Tanne verwendet. In Altbauten wurden um 1900 häufiger die Importhölzer Pitch Pine und Oregon Pine (Douglasie) verwendet. Hochwertigere Fußböden werden aus den Laub- oder Tropenhölzern hergestellt.

 

Spundung bei Holzdielen, die auch stirnseitig angewendet werden kann.

Vor dem Aufkommen von Sägewerken wurden Dielen per Hand gesägt. Sehr breite Dielen wurden aus der Mitte des Stammes gesägt, da sich diese sogenannten „Herzbretter“ weniger verziehen. Damit waren Dielen mit Breiten von bis zu einem Meter möglich, die einen ähnlich gleichmäßig liegenden und stabilen Boden ergeben wie gespundete Bretter. die Rißbildung wurde in Kauf genommen. Mit der industriellen Holzverarbeitung (in Deutschland etwa ab 1850) konnten die Dielen dünner und einheitlich breit gefertigt werden und wurden meist durch eine Nut- und Federverbindung gespundet. Die Länge war so bemessen, dass sie der Raumlänge quer zur Balkenlage entsprach. Bei sehr großen Räumen oder Fluren wurden die Dielen längs auf einem Deckenbalken gestoßen.

Statt den früher üblichen variablen Längen werden Landhausdielen und viele Massivholzdielen heute mit einer feste Konfektionslänge von etwa zwei Meter geliefert und sind allseits gespundet. Durch die Nut- und Feder-Verbindung der Dielen untereinander müssen sie nicht auf den Balken gestossen werden und können somit fortlaufend ohne Verschnitt verlegt werden.

Konstruktion und Funktion

 

Verzapfungsarten und Fixierung von Dielenböden

Bei traditionellen Holzbalkendecken wurden die Dielenbretter direkt auf die Deckenbalken genagelt. Bei gespundeten Dielen werden in der Regel Stifte (Nägel mit kleinem Kopf) schräg durch die Feder getrieben, so dass der Nagel an der Oberfläche nicht sichtbar ist. Bei der Altbausanierung können unebene und durchgebogene Balkenlagen durch entsprechend zurechtgeschnittene Futterhölzer (zum Ende hin spitz auslaufende Leisten) in der Höhe ausgeglichen werden. Ist die Seite der Balken zugänglich, so lässt sich der Höhenausgleich leicht herstellen, indem Bohlen seitlich an die Balken gerschraubt werden. An durchhängenden Balken werden die Bretter den Balken gegenüber nach oben überstehend befestigt, so dass die Dielen an diesen Stellen alleine von den Bohlen getragen werden.

Bis 2008 konnte bei Mauerwerksbauten mit bis zu 2 Vollgeschossen und aussteifenden Wänden nach DIN 1053 Teil 1 Abb. 2.1 eine „Scheibe nach DIN 1052-1 ohne rechnerischen Nachweis“ gemäß DIN 1052:1988 angenommen werden,[3] wenn

  • tragende Deckenschalungen (z. B. Dielenboden) aus Brettern mit wenigstens 12 cm Breite oder Holzwerkstoffplatten vorhanden sind,
  • Zuganker nach DIN 1053 Teil 1 Abschnitt 3.3.3.2. angeordnet werden und
  • das Gebäude durch Wände entsprechend DIN 1053 Teil 1 Tabelle 3, von Wand zu Wand durchlaufend ausgesteift ist.[4]

Historisch wurde die statische Aussteifung auch durch im 45°-Winkel zu den Balken verlegte Dielen oder durch zusätzliche, diagonal verlegte Stahlbänder erreicht. Heute übernehmen dies meistens Unterböden aus breiten Werkstoff- oder Gipsfaserplatten.

Werden Dielen unmittelbar auf den Holzbalken befestigt, so übertragen diese Trittschall und in geringem Masse auch Luftschall auf angrenzende Räume. Darunterliegende Räume können durch eine abgehängte, schalltechnisch entkoppelte Unterdecke vor der Übertragung von Geräuschen geschützt werden. In reinen Holzbauten übertragen die Deckenbalken den Trittschall jedoch über ihre Auflager in das gesamte Bauwerk. In diesem Fall sowie wenn in Massivbauten auf eine schwingend aufgehängte Unterdecke verzichtet werden soll, sollte der Dielenboden nicht direkt auf den Holzbalken befestigt werden.

In der Regel werden heute zunächst Lagerhölzer lose auf die Deckenbalken gelegt, die durch dazwischenliegende Trittschall-Dämmstreifen (z. B. Filz) von den Balken entkoppelt sind. Die Lagerhölzer werden nach dem Verlegen des Bodens ausschließlich mit den Dielen verschraubt. Es ist besonders darauf zu achten, dass keine Schraube durch den Trittschallschutz bis in den Deckenbalken geschraubt wird. Dielen können alternativ auf einen Tragschicht aus Plattenmaterial oder auf einen gut durchgetrockneten Estrich verlegt werden. Traditionell wurden die Lagerhölzer oft auch lose in die Füllung aus Hochofenschlacke gelegt, die zum Brand- und Luftschallschutz in die Zwischenräume der Balken eingebracht wurde und beispielsweise von einem darunter befindlichen Blindboden aus Einschieblingen getragen wurde.

Ein Dielenboden auf Massivdecken wie Beton benötigt Lagerhölzer, die auf dem rohen Boden liegen können oder mit elastischen Klebstoffen direkt auf den Estrich geklebt werden. Die Oberfläche blieb entweder unbehandelt oder wurde mit Ochsenblut oder Bohnerwachs versiegelt. Später kam die Versiegelung mit Klarlack hinzu, in neuester Zeit ist das Ölen eine Alternative.

In der Gegenwart werden Mehrschicht-Dielen, die als gespundet oder auch als Klick- bzw. Lock-Systeme angeboten werden, schwimmend auf Estrich oder Blindböden verlegt oder verklebt. Derartige Bodenaufbauten haben keine tragende oder statische Funktion mehr.

Quelle: Wikipedia

Antikdielen

Antikdielen bezeichnen Parkett- und Dielenböden aus gealtertem Holz.

Zur Herstellung wird traditionell Holz aus alten Scheunen und Gehöften wiederverwendet. Echte Antikdielen aus geborgenem Holz sind dadurch sehr teuer, und der Bedarf übersteigt den Ertrag dieser Quellen. Zudem sind diese Hölzer häufig schadstoffbelastet.

Aus diesem Grund hat eine neue Form der industriellen Herstellung Einzug gehalten: Die lange Alterung bei neuem Holz wird abgekürzt. Dazu wird das Holz durch manuelle oder mechanische Behandlung gealtert und mit Gebrauchsspuren versehen. Durch Räuchern, Kalken, Beizen oder Laugen wird die antike Optik unterstrichen.

Vorwiegend wird dabei Massivholz der Eichen verwendet. Die Stärke der Dielen liegt meist zwischen 14 mm und 22 mm, die Breite zwischen 70 mm und 220 mm. Von verschiedenen Herstellern werden unterschiedliche Längensysteme angeboten, wobei die Elemente auch Nut-Feder-Verbindungen aufweisen können.

Quelle: Wikipedia

PVC-Polyvinylchlorid

Polyvinylchlorid

Strukturformel
Struktur von Polyvinylchlorid
Allgemeines
Name Polyvinylchlorid
Andere Namen
  • PVC
  • IUPAC: Polychlorethen
CAS-Nummer 9002-86-2
Art des Polymers amorpher Thermoplast
Monomer
Monomer Vinylchlorid
Summenformel C2H3Cl
Molare Masse 62,5 g·mol−1
Eigenschaften
Typ PVC-U (PVC hart) PVC-P (PVC weich)
Aggregatzustand fest fest
Dichte 1,38–1,40 g·cm−3 1,20–1,35 g·cm−3
Schmelzpunkt Zersetzung > 180 °C [1] Zersetzung > 180 °C [1]
Glastemperatur 79[2]
Härte 75–155
Schlagzähigkeit gering [3]
Elastizitätsmodul 1000–3500 MPa
Wasseraufnahme gering [3] gering [3]
Löslichkeit praktisch unlöslich in Wasser [1]
löslich in organischen Lösungsmitteln (Aceton sowie Ester und Fleckenreinigungsmittel) wenn Molgew. ≤ 30.000Da [3]
praktisch unlöslich in Wasser [1]
löslich in organischen Lösungsmitteln (Aceton sowie Ester und Fleckenreinigungsmittel) wenn Molgew. ≤ 30.000Da [3]
Chemische Beständigkeit beständig gegen konz. und verd. Alkalien, Öle, aliph.Kohlenwasserstoffe
Zersetzung durch oxidierendeMineralsäuren [3]
beständig gegen konz. und verd. Alkalien, Öle, aliph.Kohlenwasserstoffe
Zersetzung durch oxidierendeMineralsäuren [3]
Wärmeleitfähigkeit gering [3] gering [3]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]

07 – Achtung

Achtung

H- und P-Sätze H: 315319335
EUH: keine EUH-Sätze
P: 261-​305+351+338 [4]
Gefahrstoffkennzeichnung [1]

keine Gefahrensymbole
R- und S-Sätze R: keine R-Sätze
S: keine S-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Polyvinylchlorid ist ein amorpher thermoplastischer KunststoffPVC (Kurzzeichen) ist hart und spröde und wird erst durch Zugabe von Weichmachern und Stabilisatoren weich, formbar und für technische Anwendungen geeignet. Bekannt ist PVC durch seine Verwendung in Fußbodenbelägen, zu Fensterprofilen, Rohren, für Kabelisolierungen und -ummantelungen und für Schallplatten, die in der englischen Sprache „Vinyls“ genannt werden.

Inhaltsverzeichnis

[Verbergen]

Aufbau

Vinylchlorid zu Polyvinylchlorid

Polyvinylchlorid wird durch radikalische oder ionische Polymerisation aus dem Monomer Vinylchlorid (chemische Formel H2C=CHCl) erzeugt.

Eigenschaften

mechanische und elektrische Eigenschaften
Vergleichsparameter PVC-U (PVC hart) PVC-P (PVC weich)
Dichte in g/cm3 1,38−1,40 1,20−1,35
Zugfestigkeit in N/mm2 (nach DIN 53455) 50−75 10−25
Reißdehnung/Reißfestigkeit in % (nach DIN 53455) 10−50 170−400
Zug-E-Modul in N/mm2 (nach DIN 53457) 1000−3500 k.A.
Kugeldruckhärte 10-Sekunden-Wert in N/mm2 DIN 53456 75…155 k.A.
Schlagzähigkeit kJ/m2 (nach DIN 53453) > 20 o.
Kerbschlagzähigkeit in kJ/m2 (nach DIN 53453) 2−75 o. Br.
spezifischer Durchgangswiderstand (nach DIN 5348) in Ω 2 > 1015 > 1011
Oberflächenwiderstand (nach DIN 53482) in Ω 1013 1011
Gebrauchstemperatur in °C −50 − +60 k.A.
Dielektrizitätszahl εr (nach DIN 53483, bei 50 Hz) 3,5 4−8
Dielektrizitätszahl εr (nach DIN 53483, bei 106 Hz) 3,0 4…4,5

Kalottenmodell von Polyvinylchlorid

Durch den Zusatz von Weichmachern lässt sich die Härte und Zähigkeit von PVC gut variieren. Es lässt sich gut einfärben. PVC nimmt kaum Wasser auf, es ist beständig gegen SäurenLaugenAlkoholÖl und Benzin. Angegriffen wird PVC von AcetonEtherBenzolChloroform, und konzentrierter SalzsäureHart-PVC lässt sich gut, Weich-PVC schlecht spanabhebend verarbeiten. Bei Temperaturen von 120 °C bis 150 °C kann es spanlos verformt werden. Verbindungen können mit Klebstoffen (Lösungsmittelklebstoffe, Zweikomponentenklebstoffe) oder durch Schweißen (verschiedene manuelle und maschinelle Schweißverfahren) hergestellt werden.

PVC brennt mit gelber, stark rußender Flamme und erlischt ohne weitere externe Beflammung schnell. Aufgrund des hohen Chlorgehalts ist PVC im Gegensatz zu anderen technischen Kunststoffen wie beispielsweisePolyethylen oder Polypropylen schwer entflammbar. Bei Bränden von PVC-Kunststoffen entstehen allerdings Chlorwasserstoff, Dioxine und auch Aromaten.

PVC ist ein guter Isolator. Die Ausbildung von Dipolen und deren ständige Neuausrichtung im elektrischenWechselstromFeld führt im Vergleich zu den meisten anderen Isolatoren zu hohen Dielektrizitätsverlusten. Wegen der hohen Festigkeit des Kabelmantels und der guten Isoliereigenschaften sind PVC-Niederspannungskabel für die Verlegung unter Putz oder im Freien sehr gut geeignet.

Geschichte

Der französische Chemiker Henri Victor Regnault war 1835 der erste, der im Gießener Laboratorium von Justus von Liebig Vinylchlorid herstellte und bemerkte, dass sich daraus bei längerer Einwirkung von Sonnenlicht ein weißes Pulver – Polyvinylchlorid – bildete, konnte die Bedeutung seiner Entdeckung jedoch nicht erkennen.

Mit ein Grund für den heutigen Einsatz von Polyvinylchlorid ist sicher die Verwendung eines anderen Stoffes und ein daraus entstehendes Abfallproblem. Mit dem Aufblühen der chemischen Industrie wurde der Rohstoff Natronlauge, der auch heute für viele Prozesse und Verfahren eingesetzt wird, in immer größeren Mengen hergestellt. Die wichtigsten Einsatzbereiche der Natronlauge sind die Verarbeitung in der Seifenindustrie, die Celluloseherstellung und die Gewinnung von Aluminium ausBauxit. Die Natronlauge wurde mit Hilfe elektrolytischer Zersetzung aus Kochsalz (Natriumchlorid) gewonnen, übrig blieb dabei Chlor und Wasserstoff.

1912 erhielt der deutsche Chemiker Fritz Klatte von der Chemischen Fabrik Griesheim-Elektron (Griesheim bei Frankfurt), später ein Produktionsort der Firma Hoechst, den Auftrag, für den in großen Mengen vorhandenen Rohstoff Ethen (Ethylen) neue Umsetzungsprodukte zu finden. Auch er setzte für seine Versuche, wie zuvor Regnault, Glasgefäße mit Vinylchlorid und verschiedenen Zusätzen dem Sonnenlicht aus. Seine Forschungen führten 1912 zur Synthese von Vinylchlorid ausAcetylen und Chlorwasserstoff. 1913 erhielt Klatte das Patent auf die „Polymerisation von Vinylchlorid und Verwendung als Hornersatz, als Filme, Kunstfäden und für Lacke“.

Er legte damit die Grundsteine für die Herstellung von PVC, das vorerst nur die Bindung von Chlor ermöglichte und so die Lagerung in großen Mengen gestattete. Mit der Rohstoffknappheit während und nach dem Ersten Weltkrieg wurden die Anstrengungen verstärkt, PVC als Rohstoff zu nutzen, um teure Rohstoffe durch kostengünstige Materialien zu ersetzen. Es kam jedoch erst Ende der 1920er Jahre zu weiteren Anwendungen. 1928 erfolgte die großtechnische Ausweitung durch Produktion in den USA und 1930 in Rheinfelden (Baden) durch die BASF; 1935 nahm die I.G. Farben die PVC-Produktion auf.

1935 gelang in Bitterfeld die Plastifikation von Hart-PVC bei Temperaturen von 160 Grad Celsius: erste Produkte waren Folien und Rohre. Letztere wurden 1935 in Bitterfeld und Salzgitter verlegt. Eine Produktmarke dieser Zeit, die umgangssprachlich auch das Ende der im Namen enthaltenen IG-Farben noch eine Zeitlang überlebte, war das Igelit. Nach 1945 war PVC der meistproduzierte Kunststoff der Welt. Im Jahr 1948 wurden schließlich Schallplatten aus PVC hergestellt, das den Schellack endgültig ablöste. Daher rührt auch die heutige Bezeichnung Vinylplatte.

Die Entwicklung der Chlorchemie beruht ursächlich auf der leichten Zugänglichkeit chlorierter Paraffine und der damit zugänglichen Palette von daraus ableitbaren Substanzen und Materialien. Begünstigt wurde dies dadurch, dass die bei der Herstellung von Natronlauge durch elektrolytische Zersetzung von Natriumchlorid entstehenden großen Mengen an Chlor zu lagern und einer Verwendung zuzuführen waren. Möglich wurde dies durch die großtechnische und kommerzielle Erschließung des thermoplastischen Materials PVC.

Technik

Ursprünglich wurde das Carbidverfahren zur Herstellung von Vinylchlorid (VCM = Vinylchloridmonomer) verwendet. Dabei wird aus Calciumcarbid durch die Umsetzung mit Wasser Acetylen gewonnen. Das Acetylen seinerseits wird mit Salzsäure (HCl) zu Vinylchlorid umgesetzt. Dieses Verfahren spielt in Europa keine Rolle mehr, wohl aber ist es in China das eher dominierende Herstellungsverfahren. Heute wird aus Rohöl Ethen gewonnen. Chlor wird großtechnisch vor allem in der Chlor-Alkali-Elektrolyse aus Kochsalz gewonnen. Das Chlor wird im ersten Schritt an das Ethen addiert, und es entsteht 1,2-Dichlorethan. In einem zweiten Schritt wird daraus HCl abgespalten, wobei VCM entsteht. Unter Druck und Zugabe von Initiatoren und anderen Additiven wird VCM in einem Autoklaven zum PVC polymerisiert. Im Wesentlichen sind drei verschiedene Polymerisationsverfahren bekannt. Das historisch gesehen älteste Verfahren ist die Emulsionspolymerisation (erstmals 1929). Die Initiatoren (zum Beispiel Peroxide und andere Perverbindungen) sind in diesem Falle wasserlöslich. Man erhält das sogenannte E-PVC. Wird das VCM durch intensives Rühren im Wasser verteilt und ist der Initiator (zum Beispiel organische Peroxide, Azobisisobutyronitril [AIBN]) im Monomeren löslich, so spricht man von der Suspensionspolymerisation, das zum S-PVC führt. Wird kein Wasser während der Polymerisation genutzt, so spricht man von Block- bzw. Masse-PVC, auch M-PVC genannt. Dabei ist der Initiator im monomeren Vinylchlorid gelöst.

Heute wird PVC nach der Anwendung in PVC-weich (PVC-P /P=plasticized) und PVC-hart (PVC-U /U=unplasticized) unterteilt. Aus Hart-PVC werden Rohre und Profile, zum Beispiel für Fenster hergestellt, ferner Pharmazie-Folien. PVC-weich enthält bis zu 40 % WeichmacherPVC-hart enthält grundsätzlich keinen Weichmacher. PVC-P spielt in Kabelanwendungen eine große Rolle. Allerdings findet es auch in Fußbodenbelägen, Schläuchen, Schuhsohlen, Dachabdichtungen, „Gummi“-Handschuhen seine Anwendung.

PVC ist ein thermoplastischer Kunststoff, der normalerweise im Temperaturbereich von 160 bis 200 Grad Celsius verarbeitet wird. Das an sich spröde und harte PVC wird mit Additiven, in erster Linie Stabilisatoren, Weichmachern, Schlagzäh-Modifier an die verschiedensten Einsatzgebiete angepasst. Die Additive verbessern die physikalischen Eigenschaften wie die Temperatur-, Licht- und Wetterbeständigkeit, die Zähigkeit und Elastizität, die Kerbschlagzähigkeit, den Glanz und sie dienen der Verbesserung der Verarbeitbarkeit. An die verwendeten PVC-Additive werden hohe Anforderungen gestellt: Sie müssen in möglichst geringer Konzentration eine hohe Wirkung erzielen, die durch die unterschiedlichen Herstellungsprozesse für das Kunststoffformteil nicht beeinträchtigt werden darf. Sie müssen eine gute Verarbeitbarkeit garantieren und dem Formteil während dessen Gebrauchsdauer die gewünschten Eigenschaften verleihen. Sie sollen auch aus Konsumentensicht sicher anwendbar sein.

Der Zusatz von Thermostabilisatoren ist notwendig, wenn Verarbeitungen bei Temperaturen zwischen 160 °C und 200 °C stattfinden. Bei diesen Temperaturen beginnt ansonsten der Zersetzungsprozesse unter Abspaltung von HCl Chlorwasserstoff. Wenn das PVC bei der Weiterverarbeitung erhöhten Temperaturen ausgesetzt ist (zum Beispiel durch Heizelementschweißen bei 260 °C), muss das Additivpaket darauf abgestimmt sein.

Der Zusatz von Weichmachern verleiht dem von Natur aus harten Werkstoff plastische Eigenschaften, wie Nachgiebigkeit und Weichheit. Als Weichmacher werden vor allemPhthalsäureester eingesetzt. Weniger Bedeutung haben Adipinsäureester und Phosphorsäureester. Die Weichmacher lagern sich bei der thermoplastischen Verarbeitung zwischen die Molekülketten des PVC ein und lockern dadurch das Gefüge. Diese Einlagerung ist eine physikalische Aufdehnung der Struktur, sodass trotz der geringen Flüchtigkeit eine Migration und Gasabgabe erfolgt. Dadurch kommt es je nach Anwendungszweck zu einer sorbierten Oberflächenschicht oder auch zur Wanderung des Weichmachers in angrenzende Materialien oder auch durch den Luftraum in benachbarte Substanzen. Weichmacher auf der Basis Dioctylphthalat (DOP) migrieren. Produkte auf anderer Basis, die auf Grund wesentlich niedrigerer Dampfdrücke langsamer migrieren, sind deutlich teurer, werden aber zunehmend zumindest in Europa eingesetzt.

Durch sogenannte Schlagzähmodifier werden Eigenschaften wie die Kerbschlagzähigkeit verbessert. Solche Modifier bestehen in der Regel aus speziellen Acrylatpolymeren oder chloriertem Polyethylen. Durch Modifier wird auch die Verarbeitung von PVC verbessert, so wird eine schnellere Plastifizierung von PVC erreicht.

Dry-Blends sind spezielle Mischungen mit PVC-Pulver.

Verwendung

Nahezu 40 % der PVC-Anwendungen werden als Fensterprofile, Rohre, Fußbodenbeläge und Dachbahnen im Bausektor eingesetzt. Rohre setzen sich auf Grund der glatten Innenfläche weniger zu, Fensterprofile sind pflegeleicht, wartungsarm und witterungsbeständig, sie sind in den verschiedensten Farben und Dekors herstellbar. PVC wird auch für schwerentflammbare Kabel eingesetzt. Verbreitet sind PVC-Folien in verschiedenen Anwendungen, so etwa für Wasserkerne von Wasserbetten. Für Kunstleder werden ebenfalls PVC-Folien verwendet.

PVC findet verbreitet Verwendung in der Elektroindustrie, als Isolationsmaterial für Kabel, als Schalterdose oder als Einziehrohr. Kreditkarten und ähnliche, wie Telefonwertkarten, sind meist aus PVC. PVC-Hartschaum findet in der Faserverbundtechnologie Verwendung als Sandwichwerkstoff. Anwendungsgebiete sind Sportboote, Rotorblätter für Windkraftanlagen und der Waggonbau. Geschäumtes PVC in Plattenform (FOREX®) wird als Trägermaterial für Werbemedien, wie ausgeplottete Schriftzüge, Bilder und Grafiken verwendet, vor allem wegen des geringen Gewichts und der einfachen Verarbeitung. Spezielle Präparationen finden ihren Einsatz bei künstlerischen Installationen und Events. Stark weichgemachte PVC-Folien werden als Anti-Slip-Unterlagen angeboten.

In einigen Anwendungsbereichen können auch andere Kunststoffe wie Polypropylen (PP) oder Polyethylen (PE) PVC ersetzen. Vorteilhaft ist dabei der Wegfall von Weichmachern, die aus Weich-PVC ausdünsten (typischer Plastik-Geruch) und gesundheitsschädlich sind. Auch die dem PVC zugeschriebene Säure-, Öl- und Seewasser-Beständigkeit sind oft nicht erforderlich. Einige Umweltverbände raten deshalb, die Herstellung von PVC auf einige wenige Spezialanwendungen einzuschränken.

Wirtschaft

Die PVC-Produktion nimmt weiterhin weltweit zu. In den letzten Jahren wurde ein Wachstum von durchschnittlich 5 % pro Jahr erzielt. Somit kann die weltweite PVC-Produktion bis zum Jahr 2016 von derzeit 34 Millionen Tonnen auf voraussichtlich 40 Millionen Tonnen pro Jahr ansteigen.[5] Vorwiegend werden Fenster mit PVC-Rahmen exportiert. Häufig wird PVC für Rohre in Kabeltrassen und für Membrandächer eingesetzt, auch für Bodenbeläge. Im Jahr 2001 erbrachten in Deutschland 150.000 Beschäftigte in 5.000 Unternehmen einen Umsatz von 20 Milliarden Euro, das ist etwa ein Viertel der gesamten Kunststoffbranche.

Nachhaltigkeit

Die europäische PVC-Branche hat im März 2000 eine Selbstverpflichtung zur nachhaltigen Entwicklung verabschiedet. Jedes Jahr wird ein Bericht über das jeweils abgelaufene Jahr veröffentlicht.[6] Es werden fünf Nachhaltigkeitsforderungen für PVC beschrieben, die auf der Basis des Frameworks von The Natural Step (TNS) erarbeitet wurden. Viele Maßnahmen innerhalb von Vinyl 2010 stimmen in der Tat mit den TNS-Nachhaltigkeitsherausforderungen überein.

  • TNS-Nachhaltigkeitsherausforderung für PVC Nr. 1 beschäftigt sich mit dem Endprodukt intrinsischen Energie- und CO2-Mengen. Das Endziel ist die Erlangung der CO2-Neutralität.
  • Kontrollierte, geschlossene Kreisläufe sind das Ziel von TNS-Nachhaltigkeitsherausforderung Nr. 2. Hydro Polymers und dessen neuen Eigentümer INEOS sind wichtige Akteure innerhalb der Recovinyl-Initiative im Rahmen von Vinyl2010.
    Eine von vielen Initiativen seitens Hydro Polymers betrifft die Entwicklung einer neuen Produktlinie EcoVin®, das weitgehend aus post-industriellen, aufgearbeiteten PVC-Abfällen von Endkunden besteht und eine Differenzierung von der traditionellen Neuware darstellt. Vinyl 2010 bietet auf starke, beeindruckende Weise in Form von Recovinyl eine Plattform dazu. Recovinyl bietet finanzielle Anreize (Incentives), um das Sammeln von PVC-Abfällen aus dem Bau- und Abbruchgewerbe zu fördern. Sein Ziel ist es, eine ständige Lieferung von Post-Consumer-PVC-Abfällen für das Recycling in Europa sicherzustellen. Recovinyl arbeitet dabei mit den verschiedensten Partnern zusammen: Konsumenten, Gemeinenden, Recyclern, Unternehmen im allgemeinen und Abfallmanagement-Unternehmen im besonderen sowie mit der Europäischen Kommission und nationalen Landesregierungen. Seit 2005 steigen die recyclierten Mengen ständig. 2008 war ein erfolgreiches Jahr für dieses Projekt. Die Abfallregistrierung im Jahr 2008 erbrachte 12.365 PVC-Liefereingänge. 198.000 Tonnen registriertem PVC-Abfall wurden erfasst und recycliert.[7]
  • Die Emission von POPs während des gesamten Lebenszyklus eines PVC-Produkts ist der Fokus der 3. TNS-Nachhaltigkeitsherausforderung für PVC. Hydro Polymers hat wichtige Schritte in Richtung zur Beseitigung der diffusen Emissionen von potenziell persistenten Stoffen in der PVC-Herstellung gesetzt. Man hat Gummidichtungen durch Titan-Dichtungen wegen der Neigung von Gummioberflächen zur Dioxinbildung ersetzt.
  • Betrachtet man den Einsatz von Additiven, die nicht nur durch ihre Eigenschaften bezüglich der direkten Toxizität zur vollständigen Nachhaltigkeit von PVC-Produkten beitragen, so kommt man zur 4. TNS-Nachhaltigkeitsherausforderung für PVC. Die Additive bestimmen nicht nur beim Gebrauch, sondern im gesamten Lebenszyklus des Produkts und darüber hinaus während der Wiederverwertung das Nachhaltigkeitspotenzial. Das Ergebnis der extensiven Untersuchungen, die unter der Federführung von Hydro Polymers gemacht wurden sind in Zusammenarbeit mit den strategischen Zulieferern von Rohstoffen[8] In diesem Programm gemeinschaftlicher Untersuchungen sind drei Strategic Supplier Sustainability-Workshops eingebunden gewesen. Ein österreichischer PVC-Stabilisatorhersteller hat in einem gemeinsamen Projekt mit Hydro Polymers seine Rohstoffe, Prozesse und Produkte für Rohranwendungen im Rahmen des TNS-Frameworks evaluiert und gefunden, dass beide Alternativen das beste Potenzial zur vollständigen Nachhaltigkeit haben[9].
  • Die Verpflichtung zur Sensibilisierung für eine nachhaltige Entwicklung in der gesamten PVC-Branche wird in der 5. TNS-Nachhaltigkeitsherausforderung untermauert. Gemeinsam mit Rohm und Haas (kürzlich von Dow Chemical Company übernommen) hat Hydro Polymers einen Weiterbildungskurs an der Blekinge Tekniska Högskola (Technische Universität Belkinge) in Karlskrona (Schweden) initiiert. Dieser Fernlernkurs hat die Entwicklung in der PVC-Industrie in Richtung Nachhaltigkeit beschleunigt. An diesem Kurs haben Schlüssellieferanten und –kunden von Hydro Polymers teilgenommen.[10].

Umwelt- und Gesundheitsaspekte, Gefahren

PVC ist eine chemisch sehr stabile Verbindung, die kaum verrottet. Sonnenlicht wirkt an der Oberfläche wenig zersetzend. Die mechanischen Eigenschaften werden nicht beeinträchtigt. Produkte und Verpackungen aus PVC sind (meer-)wasser- und luftbeständig und damit während der Zeit einer Mülldeponierung weitestgehend grundwasser– und umweltneutral.

Wird PVC verbrannt, bildet sich ätzender gasförmiger Chlorwasserstoff, der mit Wasser oder Luftfeuchtigkeit Salzsäure bildet. In Müllverbrennungsanlagen wird diese mit Kalk in den Ablüftungsanlagen neutralisiert. Bei den Temperaturen von PVC-Bränden entstehen hochgiftige Dioxine. Die Verbrennung erfolgt unvollständig und rußend. Der entstehende Rauch undRuß enthält polykondensierte Aromaten, wie Benz(a)-Pyren, Pyren und Chrysen, die hochgiftig und karzinogen wirken. Eine weitere Gefahr geht von schwermetallhaltigen Stabilisatoren wie etwa Bleidistearat aus.

Auch die Verwertung in Müllverbrennungsanlagen kann so die Umwelt beeinträchtigen, wenn nicht die besonderen Bedingungen eingehalten werden. Für PVC-Bauprodukte wie Rohre und Fenster gibt es flächendeckende Rücknahmesysteme der kunststoffverarbeitenden Industrie. So sollen Umweltschäden durch die kommunale Müllentsorgung verringert werden.

Als erste Arbeiter in der PVC-Produktion an Deformationen der Fingerendgliedmaßen erkrankten oder schwere Leberschäden bis hin zu Leberkrebs (Hämangioendothelsarkom) aufwiesen, wurde der Arbeitsschutz bei der Herstellung und Weiterverarbeitung von PVC verbessert. Die „VC-Krankheit“ wurde von den Berufsgenossenschaften als Berufskrankheitanerkannt.[11] Der Ausgangsstoff für PVC Vinylchlorid kann beim Menschen Krebs erzeugen und wirkt erbgutverändernd. Auch andere Ausgangsstoffe der PVC-Herstellung sind bedenklich.

Weich-PVC ist durch die enthaltenen Weichmacher je nach Einsatzbereich physiologisch bedenklich. Für Spielzeuge ist der Einsatz von Weich-PVC problematisch, obwohl es wegen seines günstigen Preises und der Eigenschaften verbreitet ist. Trotz des geringen Dampfdrucks können Weichmacher über Speichel, Hautkontakt oder die Atemwege in den kindlichen Körper gelangen. Die Phthalatweichmacher sind zum Teil leber- und nierenschädigend und stehen im Verdacht, krebserzeugend zu wirken. Dies ergaben mehrere Untersuchungen bei denen sich deutliche Spuren im Blut fanden. Diethylhexylphthalat (DEHP) wurde durch eine EU-Arbeitsgruppe im Jahr 2000 als frucht- und fruchtbarkeitsschädigend eingestuft. Weich-PVC mit Phthalatweichmachern wurde in der EU im Jahre 1999 für Kleinkinderspielzeug verboten.

„Der menschliche Organismus nimmt PVC-Weichmacher in höheren Mengen auf, als bisher angenommen. Besonders gefährdet sind Kinder. Die weit verbreiteten Weichmacher Phthalate gelten als höchst gesundheitsgefährdend, weil sie in den Hormonhaushalt des Menschen eingreifen und die Fortpflanzung bzw. Entwicklung schädigen“

– Umweltbundesamt

In Lebensmittelverpackungen ist Weich-PVC problematisch, wenn nicht durch Sperrschichten das Einwandern in die Lebensmittel verhindert wird. Für fetthaltige Lebensmittel sollte Weich-PVC unbedingt vermieden werden, da Weichmacher gut vom Fett aufgenommen werden.

Bestimmung

Bei einer Brennprobe riechen die Gase nach Chlorwasserstoff. Beim Verbrennen auf Kupfer färbt sich die Flamme grün (siehe Beilsteinprobe). Für eine solche Brennprobe als auch die Beilsteinprobe sollten (außerhalb der Untersuchungslabore) nur Kleinstmengen benutzt werden, da gesundheitlich bedenkliche chlororganische Verbindungen entstehen.

PVC-Entsorgung

Zur PVC-Entsorgung gibt es drei Verfahren:

Deponierung von organischen Abfällen

Dieses Verfahren war nur bis zum 31. Dezember 2004 erlaubt. Bis zum Jahr 1989 deponierte man etwa siebzig Prozent des Abfallvorkommens. (Hart-PVC vergeht nicht und schadet auch weder Wasser noch Luft, allerdings beanspruchte er großen Raum der Deponie und dies wegen der Unvergänglichkeit für einen langen Zeitraum.) Es kann keine Prognose getroffen werden, ob das Hart-PVC nicht doch irgendwann durch Mikroorganismen oder chemische Vorgänge angegriffen werden kann. Von den PVC-weich-Stoffen kann man aber mit großer Sicherheit behaupten, dass diese aufgrund ihres Weichmachers das Sickerwasser und somit die Umwelt verschmutzen.

Werkstoffliches Recycling

Mittlerweile hat man die Möglichkeit, die PVC-Abfälle wiederzuverwenden und als Recyclingmaterial in neue Produkte einzufügen. Während anfangs etwa achtzig Prozent Neu-PVC mit zur Mischung gegeben werden mussten, kann man heute mit etwa siebzig Prozent Recyclingmaterial einen gleich hochwertigen und qualitativ guten Kunststoff herstellen. Ein Vorteil dieser Recyclingmethode ist, dass durch die Verarbeitung unterhalb von 200 Grad Celsius keine hohen Emissionsmengen entstehen können.

Stoffliches Chlorrecycling

Dieses Chlorrecycling-Konzept besteht seit Mitte der achtziger Jahre. Die bei der Verbrennung von PVC gewonnene Salzsäure wird gereinigt und zurück in den PVC-Kreislauf eingeleitet, oder sie wird direkt auf den Markt gegeben.

Siehe auch

Literatur

  • Schrader, Franke: Kleiner Wissensspeicher Plaste. Zentralinstitut für Schweißtechnik Halle (ZIS). Technisch-wissenschaftliche Abhandlung. Bd 61. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1970.
  • Charles Levinson: PVC zum Beispiel. Krebserkrankungen bei der Kunststoffherstellung. Rowohlt, Reinbek 1985.
  • Robert Hohenadel, Torsten Rehm, Oliver Mieden: Polyvinylchlorid (PVC). Kunststoffe 10/2005, S. 38–43 (2005), ISSN 0023-5563
  • Andrea Westermann: Plastik und politische Kultur in Westdeutschland. Chronos, Zürich 2007; ISBN 978-3-0340-0849-5doi:10.3929/ethz-a-005303277.

Finanzdienstleistungen2

Finanzdienstleistungen

Bank- & Versicherungsgeschäfte basieren auf Beziehungen. Deswegen müssen Sie jeden Kunden, seine Familie, seine wirtschaftliche Situation und seine finanziellen Ziele kennen.

Als anbietende Finanzintermediäre kommen insbesondere Kreditinstitute, Versicherungen, Bausparkassen, Kreditkarten­unternehmen, Kapitalanlagegesellschaften, Leasing- oder Factoring­gesellschaften, Kreditvermittler oder auch Schattenbanken in Frage. Angeboten werden Finanzinstrumente, Finanzierungsinstrumente, aber auch Vermögensverwaltung, Portfoliomanagement, Kreditservicing, Maklerpools oder bloße Finanzberatung. Nachfrager können andere Finanzintermediäre und Nichtbanken (Unternehmen, juristische Personen des öffentlichen Rechts und natürliche Personen) sein.

http://www.nakigmbh.ch
info@nakigmbh.ch

079 131 17 17

Bitte kontaktieren Sie uns!

Plattenlegerarbeiten2

Plattenlegerarbeiten

Keramikfliesen sind keramische Platten, die als Wandverkleidung sowie als Beläge für den Boden, Arbeitsflächen, Fenstersimse und andere Flächen im Innen- wie Außenbereich verwendet werden. Der Begriff „Fliese“ wird auch für Naturstein, Glas, Teppich usw. genutzt, um Bauteile ähnlicher Form und Verwendung zu klassifizieren. In der Schweiz spricht man von „Plättli“, während in der Schriftsprache meistens „Platten“ oder „Plättchen“ verwendet wird. Der Begriff Kachel ist eher im Süddeutschen und in Österreich verbreitet

Geschichte

Fliesen als Außenschmuck am Felsendom, Jerusalem

Keramik stammt von dem griechischen Wort für Ton, „Keramos“, ab. Tonminerale entstehen aus den überwiegend feinstkörnigen Erweiterungsprodukten von Feldspaten, die mit unterschiedlichsten Beimengungen abgelagert wurden. Die Zusammensetzung des Tons, die Aufbereitung und der Brand bestimmen die Farbe des unglasierten Scherbens.

Die ersten Gegenstände aus gebranntem Ton stellten Menschen vor ca. 30.000 Jahren her, während die ersten keramischen Gefäße vor ca. 11.000 Jahren im Nildelta entstanden sind. Die ersten europäischen Keramikindustrien waren im Römischen Reich zu finden: Rote, glasierte Gebrauchskeramik, Terra Sigillata, war im gesamten Römischen Reich verbreitet. Die typischen roten Dachziegel sind ebenfalls bereits in großen Mengen hergestellt worden. Bodenziegel kamen auch im unteren Mittelstand zur Anwendung. Die römischen Fußbodenheizungen basierten auf keramischen und somit hitzebeständigen Werkstoffen. Die rote Farbe entstand durch die kontrollierte Belüftung des Brennofens. Schwarze Keramik wurde unter Luftabschluss gebrannt und war relativ teuer, da es sehr aufwendig war, den Brennofen abzudichten.

Keramikfliesen als Wandbelag wurden im Altertum in Ägypten, Mesopotamien und Persien angewendet, besonders in der islamisch-arabischen Architektur. Mit den Mauren kamen farbig glasierte Fliesen nach Spanien und Portugal, wo sie als Azulejos bezeichnet werden.

Für das Jahr 1000 sind die ersten nichtrömischen keramischen Bodenbeläge in Deutschland nachgewiesen. Die Handelswege der Niederländer, Spanier und Italiener verbreiteten die Keramiken in ganz Europa. Allerdings war die Herstellung sehr aufwendig und teuer, da das technische Wissen der Römer zur industriellen Herstellung verloren gegangen war.

In West- und Mitteleuropa wurden Fliesen im Mittelalter vor allem als Fußbodenbelag und zur Kaminumrandung genutzt. Diese Tonplatten, auch Tonkacheln genannt[1] trugen häufig Reliefverzierungen oder es wurde andersfarbiger Ton eingelegt, so dass ein zweifarbiges Muster entstand.

Für das 15. und 16. Jahrhundert finden vor allem Fayencefliesen aus Italien, Spanien und Frankreich Erwähnung. Von dort gelangten die Fayencen nach Antwerpen, das sich zwischen 1520 und 1570 zu einem Zentrum der Fliesenherstellung entwickelte. Nach dem Frieden von Antwerpen 1609 begann in den Niederlanden die Fliesenherstellung. Obwohl die Produkte meist Delfter Fliesen genannt werden, verlor Delft als Fliesenproduzent ab 1650 an Bedeutung und wurde von Fabriken in Rotterdam, Utrecht, Haarlem und Makkum abgelöst. Die blau-weißen holländischen Fliesentableaus und Einzelfliesen erlangten eine solche Bedeutung, dass sie sogar wieder nach Portugal exportiert wurden oder dort die Herstellung von „Azulejos in der holländischen Mode“ anregten. Auch Norddeutschland und Dänemark importierten Delfter Fliesen, mit denen häufig ganze Stuben (Pesel) ausgeschmückt wurden. Entsprechend weit reichte das Bildprogramm von Bibelfliesen bis hin zu Seefahrt und Jagd.

Mit der industriellen Revolution im 19. Jahrhundert stieg die Verbreitung der keramischen Bodenbeläge stark an. Anfangs noch als Zubrot der Ziegeleien hergestellt, entstand eine eigenständige Industrie. Seit dem späten 20. Jahrhundert werden Fliesen fast ausschließlich in hochautomatisierten Fabriken hergestellt. Es gibt aber immer noch kleine handwerkliche Betriebe, die individuelle Keramiken in kleinsten Serien produzieren.

Herstellung

Rohstoffaufbereitung

Seit den Anfängen der Keramikherstellung haben sich die verwendeten Rohstoffe nur wenig geändert. Basis ist der Werkstoff Ton als Hauptinhaltsstoff. Hierbei werden je nach Anwendung Gemische aus verschiedenen Tongruben verwendet. Neben Ton gehören weitere mineralische Rohstoffe zur Rezeptur einer Keramik. Die wichtigsten Zuschlagstoffe sind Quarz, Kaolin und Feldspat. Je nach Anwendungszweck werden unter anderem auch Kalzit, Dolomite, Flussspat oder Schamotte beigemischt. Die Kunst bei der Aufbereitung ist es, unter anderem die Verhinderung der Entmischung vor der Formgebung und das Schrumpfverhalten beim Brand kontrollieren zu können. Diese Faktoren hängen zum großen Teil nicht nur von der Korngröße, sondern vor allen Dingen von der Kornform ab. Je runder die Körner sind, desto geringer wird die Festigkeit, desto geringer wird im Gegenzug die Schrumpfung.

Formgebung

Handgeformte Keramikfliesen entstehen meistens nur noch bei Cotto oder bei Spezialanwendungen. In der modernen Keramikherstellung werden das Strangpressverfahren und die Pulverpressung (auch Trockenpressung genannt) angewendet. Beim Strangpressen wird aus einer plastischen Keramikmasse durch Extrusion ein endloses Band als Einzel- oder Doppelfliesen (Spaltklinker) hergestellt und anschließend in Fliesengröße zerteilt. Im Trockenpressverfahren wird speziell aufbereitetes Keramikpulver mit hohem Druck in Formen gepresst und danach gebrannt.

Alle Fliesen weisen besondere Muster auf der Unterseite der Fliese auf, die eine bessere Mörtelverbindung schaffen. Beim Strangpressen sind es verfahrensbedingt immer Längsrillen, die auch schwalbenschwanzförmig vertieft sein können, beim Pressen können nur einfache Muster eingepresst werden.

Ein relativ neues Verfahren ist die Verwendung von Rollenpressen bei großformatigen Feinsteinzeugtafeln (l bis größer 300 cm). Hierbei wird die keramische Grundmasse zwischen zwei sich axial bewegenden Walzen gepresst. Eine reine Pulverpresse bei Plattengrößen von mehr als zwei Quadratmeter wäre nicht wirtschaftlich.

Farben

Die Farbe von unglasierten Keramikfliesen entsteht meist durch färbende Oxide. Diese Oxide sind entweder natürliche Bestandteile der Rohstoffe (beispielsweise Eisenoxid, Mangandioxid, Titandioxid) oder sie werden dem Scherben gezielt zugemischt.

Bei glasierter Keramik wird die Oberfläche durch eine auf den Scherben aufgetragene Glasur gefärbt. Beim Monoporosa-Verfahren wird die Glasur vor dem Brand aufgetragen. Beim Biporosa-Verfahren wird der Scherben erst gebrannt, abgekühlt, und mit dem Glasurrohstoff nochmals gebrannt.

Keramikarten für Wand und Boden

Schnitt durch eine Steingutfliese, sichtbar ist die dünne Glasurschicht auf der Oberseite und die Profilierung der Unterseite zur besseren Anhaftung des Klebemörtels

Produkt Produktnorm Anwendungsbereiche[2]
Steingut- Fliesen EN 14411 Gruppe BIII Wandbekleidungen im Wohnungs- und Nichtwohnungsbau
Steinzeug- Fliesen EN 14411 Gruppe Blb; BIIa; BIIb Wandbekleidungen innen im Wohnungs- und Nicht- wohnungsbau Bodenbeläge nach erforder- licher Verschleißklasse (Innen- und Außenbeläge) Behälterbau (Trinkwasser- behälter, Schwimmbäder)
Fein- steinzeug EN 14411 Gruppe BIa Vorzugsweise (Wand- und) Bodenbeläge im Wohnungs- und Nichtwohnungsbau

Typische Steingutfliese

Steingut

Steingut (DIN EN 14411, Gruppe BIII, Anhang K) ist Keramik, deren „Scherben“ nach dem Brand bei 950–1150 °C eine Wasseraufnahme von mehr als 10 Prozent aufweist. Vorteil ist die gute Bearbeitbarkeit sowie Dekorierungsfähigkeit. Aufgrund der hohen Porosität ist Steingut nicht frostfest und bleibt auf Anwendungen in Innenbereichen beschränkt. Hierbei ist die Hauptanwendung die Verwendung als glasierte Wandfliese. Bei der Herstellung von Steingut werden zwei Verfahren unterschieden. Bei dem Einbrandverfahren (Monoporosa) wird auf die Fliese direkt nach der Formgebung flüssige Glasur aufgetragen. Anschließend wird die Fliese mit einem gewünschten Muster bedruckt. Beim Zweibrandverfahren (Biporosa) wird zuerst der Scherben gebrannt. Danach wird die Fliese glasiert und bedruckt und anschließend nochmals gebrannt.

Steinzeug

Steinzeug ist definiert als eine Keramik mit einer Wasseraufnahme von unter 3 Prozent. Aufgrund der geringen Porosität ist das Material frostbeständig. Gegenüber dem poröseren Steingut hat Steinzeug eine höhere Dichte und bessere mechanische Festigkeiten. Fast alle Fliesen für stark beanspruchte Anwendungsbereiche, zum Beispiel in Industrie, Gewerbe oder für öffentliche Bereiche, sind aus unglasiertem Steinzeug. Die Rutschhemmung wird durch die Oberflächenstruktur eingestellt. Steinzeugfliesen mit Glasuren sind die klassische Bodenkeramik. Die technischen Eigenschaften der Glasur bestimmen die Abriebfestigkeit und die Rutschhemmung.

Im Gegensatz zum Steingut wird der Scherben bei 1150–1300 °C gebrannt. Durch Zugabe von Flussspat und anderen Flussmitteln kann die Porosität verringert werden.

Feinsteinzeug

Schnitt durch eine Feinsteinzeugplatte mit strukturierter Oberfläche

Feinsteinzeug (FSZ) zeichnet sich durch eine sehr geringe Wasseraufnahme von weniger als 0,5 % aus. Es stellt damit eine Weiterentwicklung der Steinzeugfliesen dar, deren Wasseraufnahme unter 3 % liegt. Die Herstellung von Feinsteinzeug erfolgt durch trockene Verpressung von fein aufbereiteten keramischen Rohstoffen mit größeren Anteilen an Quarz, Feldspaten und anderen Flussmitteln unter hohem Druck. Danach wird der Scherben in einem Rollenofen bei hohen Temperaturen (1200–1300 °C) gebrannt.

Wegen der hohen Bruchfestigkeit und der guten Verschleißeigenschaften wird FSZ bevorzugt in öffentlichen und stark beanspruchten Bereichen eingesetzt. Durch entsprechende Oberflächenstrukturen kann die Rutschsicherheit von R 9 – R13, V4, eingestellt werden.

Zunächst wurden unglasierte Fliesen hergestellt, die eine hochdichte versinterte Brennhaut aufweisen, die annähernd so resistent gegen die Bildung von Flecken ist, wie glasierte Oberflächen.

Die Brennhaut wird auch als geläppte Oberfläche bezeichnet. Dabei handelt es sich um die anpolierte Oberschicht einer Feinsteinzeug- oder einer unglasierten Steinzeugfliese. Dies geschieht mittels mechanischer Schleifung.

Ist diese Oberfläche strukturiert bzw. reliefartig gestaltet, dann erscheint der höher ragende Bereich eher glänzend, der tiefer liegende Bereich eher matt.

Poliertes FSZ besitzt keine geschlossene Oberfläche. Die Porenräume des Scherbens werden beim Polieren durch die Entfernung der sogenannten Brennhaut geöffnet, wodurch bestimmte Verunreinigungen, die nach der Verlegung auftreten, schwieriger zu entfernen sind. Je nach Herstellungsverfahren unterscheidet sich die Porosität sehr stark.

Durch das Aufbringen von farbigen Keramikpulvern oder löslichen Salzen kann die Oberfläche von unglasiertem FSZ beeinflusst werden. Allerdings sind die Möglichkeiten aufgrund des durchscheinenden Scherbens eingeschränkt. In zunehmendem Maße wird glasiertes und bedrucktes FSZ mit einer großen Vielfalt an Dekoren hergestellt. Beispielsweise können Steine, Hölzer, Stoffe, Kork, Leder etc. imitiert werden.

Glasuren auf Steinzeug und Feinsteinzeug erreichen meist nicht die Abriebfestigkeit des Trägermaterials.

Terrakotta

Basismaterial für diese Fliesenart, umgangssprachlich auch Cotto genannt, ist ein Kalkmergel, der auch als toskanischer Schieferton bezeichnet wird und Verunreinigungen aus Quarzkrümeln enthält. Das im Tagebau gewonnene Material wird mit Wasser vermengt, geknetet, durch eine Zerkleinerungsanlage (Wolf) gedreht und strang- oder trockengepresst, oder in Holzformen gedrückt und an der Luft getrocknet. Traditionell wurden auch Reliefs oder Muster in die feuchte Masse gedrückt. Teilweise wird die Oberflächenstruktur nach dem Trocknungsprozess durch die Bearbeitung mit Stahlbürsten angepasst. Der Brand erfolgt über 36–48 Stunden bei einer Temperatur von 950 bis 1050 °C. Dabei entsteht aus dem blau-grauen Ton durch Oxidation der typisch rötlich gefärbte Cotto. Terrakotta-Produkte werden mit größerer Materialstärke als moderne Keramikprodukte gefertigt, da das grobe und kalkhaltige Rohmaterial oft keine große Festigkeit besitzt.

Klinker und Spaltklinker 

Zu den grobkeramischen Produkten gehören die klassischen Klinker. Bestehend aus Schamotte, Feldspäten und weiß- oder rotbrennenden Tonen (d. h. die Farbe entsteht erst durch den Brand), werden sie wie Cotto als Teig angerührt und im Strangpressverfahren geformt. Wenn bei der Trocknung eine Restfeuchte von circa drei Prozent erreicht worden ist, wird der Hartziegel glasiert oder unglasiert bei 1200 °C gebrannt. Um Verformungen beim Brand durch unterschiedlich strukturierte Ober- und Unterseiten zu minimieren, werden solche Platten oft als Spaltklinker in doppelter Ausfertigung (Rücken an Rücken, mit Stegen verbunden) geformt, gemeinsam gebrannt und erst nach Fertigstellung getrennt bzw. gespalten.

Hohe Kantenschärfe und Beständigkeit gegen Wasser und Frost sind die Voraussetzungen, dass Klinker ein idealer Boden- und Wandbelag für Innen- und Außenbereiche sind, auch als Verblendung, die vor ein Mauerwerk mit einem Klinkermörtel aufgeklebt wird. Die volkstümliche Bezeichnung als „Klinkerwand“ für jede vorgemauerte Wandschale ist unrichtig, hierfür werden weichere Steine, auch härter gebrannte Lochmauersteine verwendet, jedoch nur selten (und unfachgerecht) Vollklinkersteine, da solche Wände wegen mangelnder Mörtel-Verbundhaftung leicht Risse bekommen.

Vollklinker kommen überwiegend als Gehwegbelag zum Einsatz. Hierbei handelt es sich um unglasierte Klinkersteine. Diese sind trittsicher, wasserabweisend, frostfest und langlebig. Auch verändern sie im Gebrauch ihre Farbe nur wenig und verschmutzen kaum, sie bekommen lediglich eine Patina.

Kriterien für die Gebrauchseigenschaften

Fliesen werden im Wesentlichen nach ihrer Wasseraufnahmefähigkeit, ihrer Frostbeständigkeit, ihren rutschhemmenden Eigenschaften und der Beständigkeit ihrer Oberfläche gegenüber Abrieb klassifiziert.

Keramikfliesen werden in zwei Qualitäten eingeteilt: erste und zweite Wahl. Dabei werden sowohl optische wie auch qualitative Anforderungen an Glasur, Oberfläche, Maßhaltigkeit und Wasseraufnahme gestellt. Fliesen mit groben Fehlern werden oftmals auch als dritte Wahl angeboten oder gelangen in den Ausschuss.

Wasseraufnahmevermögen

Gruppe Massen-% Wasseraufnahmevermögen
Ia höchstens 0,5 %
Ib höchstens 3 %
IIa 3 % bis 6 %
IIb 6 % bis 10 %
III mehr als 10 %

Die Europäische Norm DIN EN 14411 unterteilt keramische Fliesen und Platten nach ihrem Wasseraufnahmevermögen in fünf Gruppen. Die Prüfung erfolgt nach DIN EN ISO 10545.

Frostbeständig und somit für den Außenbereich geeignet sind nur Fliesen und Platten der Gruppen Ia und Ib. Dies gilt auch Fliesen auf überdachten Flächen wie Balkonen, da diese nach Durchfeuchtung ebenfalls vom Frost geschädigt werden können. Da gewöhnlicher Fugenmörtel wasserdurchlässig ist, muss auch bei Verklebung und Unterkonstruktion auf frostbeständige Materialien und richtige Verarbeitung geachtet werden.

Aufgrund des dichten Scherbens sind Feinsteinzeugfliesen generell frostbeständig.

Abriebfestigkeit

Die Abriebbeständigkeit der Glasur von Steinzeugfliesen (Widerstandsfähigkeit gegen Oberflächenverschleiß) wird durch ein genormtes Prüfverfahren mit einer Prüfmaschine mit rotierenden Stahlbürsten des amerikanischen Porzellan- und Emaille-Instituts (PEI) oder durch Sandstrahlen geprüft und nach DIN EN ISO 10545-7 in die Klassen 0 bis 5 eingeteilt (siehe Tabelle).

Abrieb (Oberflächenverschleiß) tritt bei Bodenbelägen infolge schleifender, reibender Beanspruchung auf und kann bei glasierten Fliesen durch Glanzveränderung der Oberfläche sichtbar werden.Glasierte Steinzeugfliesen werden hinsichtlich ihrer Beständigkeit gegen Abrieb in Gruppen unterteilt und können damit Anwendungsbereichen zugeordnet werden. Die Abriebbeständigkeit (Verschleißgruppe) ist die durch Schleif- und Sandstrahlprüfung ermittelte Widerstandsfähigkeit glasierter Fliesen und Platten. Sie wird vom Hersteller angegeben.

Abrieb- klasse Prüf-Umdrehungen Anwendungsbereiche[3]
1 150 für Wandmaterial sowie barfuß oder mit Hausschuhen begangene Flächen
2 600 für leichte Beanspruchung in wenig genutzten Räumen in privaten Haushalten
3 750/ 1500 für mittlere und kratzende Beanspruchung mit normalem Schuhwerk; etwa in privaten Dielen, Fluren und auf Balkonen, sowie in Hotelzimmern und -bädern
4 2100 / 6000/ 12000 für hohe Beanspruchung durch häufige Begehung mit normalem Schuhwerk in öffentlichen Eingangsbereichen, Terrassen, Küchen, sowie in Wirtschafts- und Verkaufsräumen, Krankenhäusern, Bürogebäuden, Hotels und Schulen
5 >12000 Anwendungsbereiche mit sehr starkem Publikumsverkehr, wie Verkehrsanlagen, Gastronomie, Verkaufs-, Versammlungs- und Sportstätten, sowie bei Beanspruchung durch Befahren wie in Garagen

Unter Zugabe von Wasser und definierten Schleifmitteln wird ein künstlicher Abrieb ermittelt. Als Ergebnis erhält man einen Wert, der angibt, bei welcher Anzahl der Umdrehungen sich eine sichtbare Veränderung ergibt. Diese Werte werden dann für eine Klassifizierung benutzt.

Bei unglasierten keramischen Fliesen und Platten wird der Tiefenverschleiß nach DIN EN ISO 10545-6 ermittelt. Mit Schmelzkorund und einer speziellen Schleifscheibe wird der „anfallende Abrieb“ gemessen. Je geringer der Wert, desto verschleißresistenter ist die Keramik.

Rutschsicherhei

Bewertungsklassen
Gruppe Haftreibwert Neigungswinkel
R9 Minimum von 6 bis 10°
R10 erhöht von 10 bis 19°
R11 erhöht2 von 19 bis 27°
R12 groß von 27 bis 35°
R13 sehr groß über 35°
Verdrängungsraum
Gruppe Mindestvolumen (cm³/dm²)
V4 4
V6 6
V8 8
V10 10

Durch die Prüfung der Rutschsicherheit nach der DIN 51130 erfolgt die Einstufung in R-Werte. Je höher die hinter dem „R“ stehende Zahl, desto rutschhemmender und schlechter reinigungsfähig ist der Belag. Wie aus der Tabelle zu ersehen ist, gibt es die Bewertungsgruppen von R9 bis R13. Die BGR 181 der Berufsgenossenschaften findet jedoch keine Anwendung auf Fußböden in Arbeitsräumen, Arbeitsbereichen und betrieblichen Verkehrswegen, bei denen keine gleitfördernden Mittel zu erwarten sind. Regenschirme transportieren Wasser, also sollte immer auf die BGR 181 Rücksicht genommen werden. Bei Abweichung von der BGR 181 sollten die Berufsgenossenschaft und die Gewerbeaufsicht zum jeweiligen Bauobjekt grundsätzlich befragt werden, da es vorkommen kann, dass beide Institutionen unterschiedliche Meinungen haben können. In Bereichen, wo fettige, pastöse oder faserig-zähe Stoffe auf den Boden gelangen, müssen Fliesen eventuell auch noch einen „Verdrängungsraum“ besitzen. Dieser Verdrängungsraum ist der zur Gehebene hin offene Hohlraum unterhalb der Gehebene und wird nach vier V-Klassen bewertet. Der V-Wert gibt an, wie viel cm³ Flüssigkeit der Boden auf einem dm² mindestens aufnehmen kann.

Eine Besonderheit bilden Keramiken für nassbelastete Barfußbereiche. Diese Oberflächen werden nach DIN 51097 geprüft und in die Bewertungsgruppen nach GUV 26.17 A, B und C eingeteilt.

Für den privaten Bereich gibt es keine Vorgaben. Dort sind polierte oder glattglasierte Keramiken anwendbar. Ein privates Schwimmbad oder eine private Sauna sollte aber nach den Regeln der GUV 26.17 Rutschsicherheit für nassbelastete Barfußbereiche ausgeführt werden.

Werden Bodenbeläge mit geringerer Mindestrutschhemmung geplant oder eingebaut (nach BGR 181/GUV 26.17), drohen im Unglücksfall Schadenersatz- oder Regressansprüche.

Säurebeständigkeit

Die Säurebeständigkeit wird nach der DIN EN ISO 10545-13 bestimmt.

Fleckempfindlichkeit

Fleckempfindlichkeit wird nach der DIN EN ISO 10545-14 klassifiziert.

Ökologische Aspekte

Keramikfliesen enthalten durch den Brand keine raumluftbelastenden, ausgasenden Stoffe. Bei Verlegung mit einem Kalk- oder Zementmörtel wird die Raumluft nicht mehr belastet, wenn das Anmachwasser verdunstet ist.

Feinsteinzeug sowie glasiertes Steinzeug und Steingut besitzen eine sehr dichte Oberfläche. Schimmelpilze finden im Allgemeinen nur in den Fugen ein geeignetes Substrat.

Bei einer Verlegung mit Reaktionsharzen, die säurebeständig sind, besteht neben einer Ausdünstungsgefahr auch ein höheres Risiko der mikrobiologischen Besiedlung gegenüber alkalischen Klebe- und Fugenmörteln.

Die Strahlenbelastung hängt von den verwendeten Ausgangsstoffen ab. Eine Gefährdung ging früher hauptsächlich von Natriumdiuranat- (Uranglas) und Kobaltglasuren aus. (Siehe Radonbelastung.)

Formate

Bis in die 1970er Jahre dominierte bei den Wandfliesen das Format 15 × 15 cm. Seitdem wird eine große Zahl neuer Formate angeboten mit der Tendenz zu immer größeren Fliesen. Inzwischen werden Formate von 120 × 120 cm und darüber hinaus verwendet.

Die gängigsten Formate lagen 2008 zwischen 25 × 33 und 30 × 90 cm bei Wandfliesen aus Steingut sowie 33 × 33 und 45 × 90 cm bei Bodenfliesen aus (Fein-)Steinzeug. Aufgrund des komplexeren Herstellungsverfahrens sind größere Formate teurer.

Auch Mosaikfliesen in Formaten von 1 × 1 cm bis 10 × 10 cm werden vermehrt verwendet.

Detail im gefliesten Bad: Übergang zwischen Fliesen und verputzter Wand durch Schienen

Überdies existieren Formstücke für Sockelausbildungen, Bordüren, Treppenstufen, Ecken etc. sowie spezielle Schienen zum Anschluss an andere Bodenbeläge, Ecken etc.

Maßangaben

Zu unterscheiden ist zwischen dem Nennmaß, dem Werkmaß, dem Koordinierungsmaß, dem Modularen Maß und dem Istmaß.

Das Nennmaß (z. B. 15 × 15 cm) beschreibt die nominelle Fliesengröße in cm, unter der die Fliesen gehandelt werden. Das Istmaß beschreibt die tatsächlich vorhandenen Abmessungen, die innerhalb des Toleranzbereichs von Fliese zu Fliese abweichen können.

Das Werkmaß „W“ ist das vom Hersteller vorgesehene Fertigungsmaß und addiert sich mit der Fuge zum Koordinierungsmaß „C“ (in mm). Zum Beispiel hat eine Fliese mit dem Werkmaß 247 × 197 × 5 mm ein Koordinierungsmaß von 250 × 200 mm und eine vorgesehene Fugenbreite von 3 mm. Das Nennmaß ist 25 × 20 cm.

Das Modulare Maß basiert auf einem Raster von M = 100 mm und gleicht dem Koordinierungsmaß. Das heißt, es beinhaltet die Vorgabe für die Fugenstärke in Verbindung mit dem Werkmaß.

Kalibrierung und Rektifizierung 

Bedingt durch den Brennvorgang weisen traditionell gefertigte Fliesen leicht abgerundete Kanten und gewisse Maßabweichungen auf und sind zur Verlegung mit Fugenbreiten von rund 5 mm (bzw. im Bereich von 3 bis 8 mm) vorgesehen.

Um schmalere Fugenbreiten zu erreichen, ohne dass Maßabweichungen optisch auffallen, werden Fliesen im Werk vorsortiert (nach „Kaliber“). Sortierte Fliesen besitzen in der Regel Maßabweichungen von weniger als ± 0,7 mm und werden auf der Verpackung mit der Angabe „kalibriert“ bzw. „cal.“ sowie dem genauen Maß oder einer Kennziffer gekennzeichnet. Bei Verlegung mit geringer Fugenbreite sollten Fliesen mit gleicher Kennziffer verwendet werden.[4]

Feinsteinzeugplatten werden auch als „rektifiziert“ angeboten. Rektifizierte Fliesen wurden nach dem Brand auf Maß geschnitten, so dass sie scharfe und exakt rechtwinklige Kanten aufweisen. Durch genau definierten Aussenmaße läßt sich die Fugenbreite auf 1,5 bis 2 mm verringern. Die scharfgeschnittenen Kanten sind optisch sowie beim Begehen von Fußbodenflächen allerdings deutlich wahrnehmbar, wenn Höhendifferenzen zwischen den Platten vorliegen. Bei der Verlegung ist daher eine besondere Sorgfalt erforderlich.[5][6][7][8]

Oberflächen und Reinigung von Keramikfliesen

Gaststätten-Urinal

Schmutzanhaftung und Reinigungaufwand sind in erster Linie abhängig von der Oberflächenrauheit. Während Wandfliesen und viele Bodenfliesen eine pflegeleichte, glatte Oberfläche besitzen, wird in gewerblichen Küchen und Schwimmbädern ein rutschsicherer Belag gefordert, die durch eine Strukturierung und Erhöhung der Rauheit der Fliesenoberfläche erreichbar ist.

Imprägnierung

Imprägniermittel wie Silane reduzieren die Fleckempfindlichkeit von offenporigen Oberflächen. In kapillar saugfähiger Keramik wie Terrakotta oder Steingut können zudem farbverändernde Substanzen einziehen.

Bei glasierter Keramik, unpoliertem Feinsteinzeug sowie bei unglasierten, aber vom Hersteller oberflächenvergüteten Belägen („keramische Versiegelung“) kann eine Imprägnierung nicht in die Oberfläche einziehen und würde auf der Oberfläche einen unerwünschten Belag hinterlassen. Auch bei offenporigen Werkstoffen können nicht von der Oberfläche aufgenommene Reste der Imprägniermittel zur Anhaftung von Verunreinigungen führen, speziell von in Gummi enthaltenem Ruß.

Beim Polieren von Feinsteinzeug wird die gesinterte Oberfläche abgetragen, so dass die feinen Porenräume freiliegen. Obwohl Feinsteinzeug kaum kapillar saugfähig ist, wird von den Herstellern häufig eine Imprägnierung empfohlen, um die Reinigung zu erleichtern.

Ziegelböden aus unglasiertem Steinzeug (Terracotta) oder (Spalt-)Klinkern wurden traditionell mit Klinkeröl oder anderen porenfüllenden Mitteln imprägniert, wenn es erforderlich schien, sie vor Fett-, Rotwein- und anderen Flecken zu schützen. Manche Hersteller empfehlen, die Imprägnierung noch vor dem Verfugen vorzunehmen.

Zur Versiegelung der Fugen sind spezielle Imprägniermittel erhältlich. Empfohlen wird oft eine vorherige Säuberung der Fugen mit einem sauren Reinigungsmittel (z. B. Anti-Kalk).[9]

Werkseitige Vergütungen

Nachträgliche Schutzbehandlungen durch Imprägniermittel unterscheiden sich von werkseitigen mineralischen Oberflächenvergütungen, wie Glasuren oder Engoben. Diese werden im Verlauf eines zweiten Brennvorgangs auf der Oberfläche aufgeschmolzen bilden eine glatte, flüssigkeits- und schmutzabweisende Beschichtung.

Reinigung

Insbesondere nach dem Verfugen von unglasierte Fliesen sollte die Fugenmasse gründlich abgewaschen werden, damit sich das Bindemittel nicht in der Oberfläche festsetzt und dort aushärtet. Falls es doch zu einer Verfärbung der Oberfläche kommt, kann Zementschleierentferner eingesetzt werden, um den grauen Zementbelag anzulösen und entfernen zu können. Dieser saure Spezialreiniger greift auch die Fugen an. Sie sollten daher angenässt werden, um das Eindringen des Reinigers in die Fuge zu erschweren. Nach dem Abwaschen des Reinigers kann die Fläche mit einem alkalisch wirkenden (Reinigungs-)Mittel neutralisiert werden.[10]

Fliesen mit geschlossener Oberfläche sind pflegeleicht und lassen sich mit beliebigen Haushaltsreinigern säubern. Zur Entfernung fettiger Verunreinigungen werden alkalische Reinigungmittel empfohlen.[10]

Pflegemittelhaltige Reiniger, die einen Fett-, Wachs- oder Polymerfilm hinterlassen, können das Erscheinungsbild der Fliesenoberfläche verändern und sich auf Dauer zu einer unansehnlichen und schlimmstenfalls klebrigen Schicht akkumulieren. Sofern diese Mittel im professionellen Bereich eingesetzt werden, um die Eigenschaften der Fliesenoberfläche zu beeinflussen, werden die zurückbleibenden Schichten meist bei einer jährlichen intensiven Grundreinigung wieder entfernt.[10]

Bei hartnäckigen Verschmutzungen sowie rutschsicheren Fliesen mit rauer Oberflächenstruktur kann es erforderlich sein, das Reinigungsmittel zunächst einwirken zu lassen und Microfaserbezüge, Bürsten oder Reinigungspads einzusetzen. Bürsten und Pads sollten keinen Schleifkornzusatz enthalten, der die Oberfläche mattieren oder abtragen würde.[10]

Schimmel und schwarze Stockflecken werden mit chlorhaltigen Reinigern oder speziellem Schimmelentferner entfernt.

Meine Arbeit

Showroom