Vertrauen ist der Anfang von Allem
Parkett, Laminat, Kork, Vinyl

Aufbau

Estrich

Als Estrich (althochdeutsch esterih; über lateinisch astracus, astricus „Pflaster (aus Tonziegeln)“ von altgriechisch ὄστρακον óstrakon „Scherbe, irdenes Täfelchen“) bezeichnet man in Deutschland den Aufbau des Fußbodens als ebenen Untergrund für Fußbodenbeläge. Estriche werden je nach entsprechender Art und Ausführung auch fertig nutzbarer Boden genannt.

Das schweizerische Wort für Estrich ist Unterlagsboden, das Wort „Estrich“ bezeichnet dort den Dachboden.

 

Grafische Darstellung eines Fußbodens

Neben seiner Aufgabe als „Füll- und Ausgleichsstoff“ ist ein Estrich vor allem als Lastverteilungsschicht anzusehen, unter der sich Heizungen, Wärme- und Schalldämmungen befinden können. Er kann ebenso die direkte Nutzschicht sein.

Eine Sonderform ist der sogenannte „Nutzestrich“ oder „Sichtestrich“. Dabei ist der Estrich gleichzeitig die „Nutzschicht“ ohne Oberbodenbelag. Estrich wird aus Estrichmörtel hergestellt, dieser besteht aus einer Gesteinskörnung (meist Sand) und einem Bindemittel (z. B. Zement, Calciumsulfat, Magnesiumoxid, Bitumen). Alternativ dazu gibt es auch Trockenestrich aus Fertigteilplatten

 

Frisch verlegter Estrichfußboden

Definition

Die DIN EN 13318 definiert den Begriff Estrich wie folgt: Schicht oder Schichten aus Estrichmörtel, die auf der Baustelle direkt auf dem Untergrund, mit oder ohne Verbund, oder auf einer zwischenliegenden Trenn- oder Dämmschicht verlegt werden, um eine oder mehrere der nachstehenden Funktionen zu erfüllen:

  • den Druck gleichmäßig auf die darunterliegende Dämmung verteilen
  • gleichmäßiger Untergrund für einen Bodenbelag
  • unmittelbare Nutzbarkeit
  • eine vorgegebene Höhenlage zu erreichen[1]

Estriche nach Bindemittel

Estriche können nach ihren Bindemitteln unterschieden werden.

Zementestrich (CT)

Der bekannteste Estrich ist der nach DIN EN 13 813 als CT (von Cementitious screed) bezeichnete Zementestrich. Es handelt sich dabei um einen Mörtel, dessen Korngröße und Mischung auf seine spezielle Verwendung optimiert wurden. Üblicherweise werden Korngrößen bis zu 8 mm verwendet. Bei Estrichdicken über 40 mm darf das Größtkörn maximal 16 mm groß sein. Das Mischverhältnis von Zement zu Sand liegt etwa bei 1:5 bis 1:3.

Der Zementestrich (CT) hat den Vorteil der Beständigkeit gegenüber Wasser nach der Aushärtung. Und auch Kälte und Hitze sind keine Probleme. Außerdem können mit Zement als Bindemittel hohe Festigkeiten erreicht werden. Nachteilig ist die Anfälligkeit des Zements für chemische Angriffe (z. B. durch Säuren) und das Verhalten auf Dämmungen oder Trennlagen. Durch „Schrumpfungsvorgänge“, die sich beim Erhärtungsvorgang des Estrichs in Kriechen und Schwinden infolge der ungleichmäßigen Hydratation ausdrücken, ist die Feldgröße in der Regel auf 36 m² zu begrenzen, da sich in der Konstruktion sonst unkontrolliert Risse bilden. Des Weiteren benötigt der Zementestrich relativ lange bis er belegereif ist.

Zementestrich erfordert nach dem Mischvorgang eine unverzügliche Verarbeitung. Und beim Einbringen und während der ersten drei Tage der Erstarrung eine Mindesttemperatur von 5 °C (auch nachts). Während der Erstarrungsphase darf diese Temperatur nicht unterschritten werden, da sonst mit starken Festigkeitsverlusten zu rechnen ist. Der Estrich ist außerdem vor Zugluft und Wassereintrag (undichtes Dach, Auskippen von Wasser usw.) zu schützen. Die Zugluft führt durch den Kapillarzug zu einer erhöhten Hydratation im Oberflächenbereich. Das bedeutet, dass „oben“ ein kleineres Volumen ist als „unten“ und der Estrich stark schüsselt. Zu viel Wärme zum Beispiel durch Zwangstrocknungen mit Heizungen führen zum Abbruch der Hydratation bzw. des Kristallwachstums. Daraus resultiert ein Schaden, wenn der Estrich Feuchte bekommt, z. B. durch Wasser aus einem Verlegemörtel. Die Begehbarkeit richtet sich nach der Art des Zements (CEM I, CEM II), der Dicke und den Umgebungsbedingungen. Ein schwimmend verlegter Zementestrich sollte frühestens nach 3 Tagen begangen werden. Nach 28 Tagen kann die erste Feuchtemessung durchgeführt werden.

Soll der Zementestrich mit einem Bodenbelag versehen werden, so muss der Estrich „genügend trocken“ (3.1.1 der DIN 18365 – Bodenbelagsarbeiten) sein. Nach einer Empfehlung zweier Verbände aus dem Jahr 2007 soll die Feuchtigkeitsmessung mit der Calciumcarbid-Methode (CM) nach DIN EN 18560 durchgeführt werden. Die so genannte Belegreife soll erreicht sein, wenn der Estrich eine Restfeuchte von maximal 2,0 CM % (unbeheizt) bzw. 1,8 CM % (beheizt) aufweist. Sowohl die Messmethode als auch die empfohlenen Grenzwerte werden kritisiert; nach einer im März 2012 veröffentlichten Studie der Technischen Kommission Bauklebstoffe (TKB) und der Universität Siegen trennt der CM-Grenzwert von 2 % belegreife Estriche nicht sicher von nicht belegreifen Estrichen. Bei diesem Grenzwert werden auch nasse Estriche als trocken bewertet.[2] Die DIN EN 18560 sagt außerdem, dass die Beurteilung der Belegreife zur Prüfpflicht des Oberbodenlegers direkt vor der Verlegung gehört

Bisher wird die Feuchtemessung bei Estrichen jedoch weiterhin nach der CM-Methode nach DIN 18560-1 durchgeführt. Die aktuellste Version der Norm DIN EN 18560 ist aus dem Jahre 2015. Diese Prüfmethode gilt auch für Calciumsulfat- und Magnesiaestriche, nicht aber für Kunstharz- und nicht für Gussasphaltestriche.

Schnellestriche auf Zementbasis bestehen aus Zement mit Zusätzen. Hier gelten andere Bedingungen für die Erhärtung und die Belegreife, die von Art und Wirkung des Zusatzes abhängt. Diese Estriche unterliegen nicht der DIN 13813 und gelten als Sonderkonstruktion. In dem Merkblatt 14 der Technischen Kommission Bauklebstoffe (TKB) wird festgestellt, dass sich bei Schnellestrichen grundsätzlich keine verlässlichen Aussagen zur Belegreife machen lassen. Die Ausnahme bilden Estriche mit ternären Bindemitteln. Dabei handelt es sich um Drei-Stoffgemische bestehend aus Portland-/Normalzement, Aluminatzement (Tonerdeschmelzzement), Calciumsulfat und weiteren Additiven. Dabei sind die Angaben vom Hersteller maßgeblich.

Ausgestemmter Zementestrich gilt als normaler Bauschutt, sofern keine organischen Bestandteile >5 % enthalten sind. Grundlage dafür ist die Verordnung über das Europäische Abfallverzeichnis (AVV).

Gussasphaltestrich (AS)

Der wasserfreie Gussasphaltestrich (AS) (von Mastic Asphalt screed) nach DIN EN 12591 besteht aus einem Gemisch aus Bitumen und Gesteinskörnungen (einschließlich Füller). Je nach Belastungsanforderungen werden normalerweise maximale Korngröße zwischen fünf und elf Millimeter verwendet.

Da dieses Gemisch auf eine Temperatur zwischen 220 °C und 250 °C erhitzt werden muss, ist der Gussasphaltestrich beim Einbau gieß- und streichbar und braucht nicht verdichtet zu werden. Er kann schwellen- und fugenlos eingebracht werden. Seine geringe Wärmeleitfähigkeit und seine trittschallmindernde Eigenschaft können dazu führen, dass abhängig von den bauphysikalischen Anforderungen an die Deckenkonstruktion keine Dämmungen eingebaut werden müssen. Er ist wasser- und wasserdampfdicht und stellt in Verbindung mit geeigneten Bitumen-Schweißbahnen oder einer Asphaltmastix eine Abdichtung im Sinne der DIN 18195 dar.

Die Einbaudicke von Gussasphaltestrich beträgt mindestens 20 mm. Liegt die Einbaudicke bei über 40 mm so muss der Estrich in zwei Lagen eingebracht werden. Vor dem Erkalten wird die Oberfläche mit feinem Sand abgerieben.

Der Gussasphaltestrich kann entweder als Verbundestrich mit einer Bitumen-Schweißbahn als Haftbrücke oder als Schwimmender Estrich auf einer Trennlage mit Dämmschicht eingebaut werden. Auch als Heizestrich ist Gussasphalt einsetzbar, wobei hier nur die Härteklasse ICH 10 zulässig ist. Gussasphaltestrich wird, im Gegensatz zu Estrichen mit anderen Bindemitteln, aufgrund seiner Stempeleindringtiefe (nach DIN EN 12697-20) klassifiziert. Es gibt die Härteklassen IC 10, IC 15, IC 40, IC 100. Je höher die Zahl, desto weicher der Estrich.

Vor einer Belegung mit mineralischen Werkstoffen (Naturstein, Keramik, Betonwerkstein) ist i. d. R. eine Entkopplung oder eine Sperrschicht zu erstellen. Mörtelwasser ist hochalkalisch und kann die Oberfläche des AS kalt verseifen und eine Anhaftung erschweren. Hinzu kommt eine Verfärbungsgefahr durch wandernde bituminöse Stoffe. Ein weiterer Nachteil ist die langsame Bewegung bei Wärme und statischen und dynamischen Lasten.

Der größte Vorteil des Gussasphaltestrichs ist die kurze Belegreife, so lässt sich ein Gussasphaltestrich meist schon nach einer kurzen Abkühlzeit von 2–3 Stunden begehen und im besten Fall nach etwa 4 Stunden belegen. Und die Verlegung ist unabhängig von der Außentemperatur oder Witterung. Zusätzlich ist Gussasphaltestrich resistent gegen die meisten Laugen und Säuren und somit auch für Industriefußböden interessant.

Der größte Nachteil sind die hohen Kosten. Außerdem ist der Einbau in oberen Stockwerken oft problematisch, da der Estrich kaum pumpfähig ist.

Kunstharzestrich (SR)

Mit der internationalen Bezeichnung SR (von synthetic resin screed) werden Kunstharz­estriche, in der Regel Epoxydharz­estriche, bezeichnet. Aber auch Polyurethan, Polymethylmethacrylat und andere Kunststoffe sind möglich. Außerdem werden oft Farbpigmente zugegeben. Kunstharzestriche werden auf trockenen Untergrund meist in einer einzigen dünnen Schicht von ca. 8–15 mm eingebaut. Er ist unmittelbar nach dem Mischvorgang zu verarbeiten und eine Verdichtung ist in der Regel auch notwendig.

Diese sehr teuren Untergründe werden nur in Sonderfällen eingebaut, zum Beispiel wenn man kurze Trocknungszeiten oder hohe dynamische Belastbarkeit benötigt. Die Schrumpfung bei der Polyaddition liegt je nach Produkt bei 1 bis 5 Prozent. Dies ist bei der Auswahl des Verlegematerials zu berücksichtigen.

Kunstharzestrich ist wasserbeständig, er bildet eine nicht staubende flüssigkeitsdichte Schicht die für schwere mechanische Beanspruchung genutzt werden kann. Gegen die meisten Chemikalien ist der Estrich unempfindlich. Neben dem hohen Preis ist gibt es noch den Nachteil, einer möglichen Gefahr durch die Härter, wie z. B. Bisphenol A. Diese stehen in dem Verdacht, Unfruchtbarkeit zu verursachen. Auch ist ggf. eine Änderung der Brandklasse der Gesamtkonstruktion möglich. Der Estrich verliert bei höheren Temperaturen seine Beständigkeit und kann in der Regel Temperaturen über 100 °C nicht widerstehen. Polykondensate, wie Polyester, sind durch die hohe Schrumpfungsrate nicht geeignet.

Die Aushärtungszeiten sind von dem gewählten Kunstharzbindemittel, sowie den Temperaturen bei Einbau und Aushärtung abhängig. Nach 3 bis 7 Tagen ist der Estrich üblicherweise belastbar.

Kunstharzestrich gilt als Sondermüll und muss beim Entsorger entsprechend deklariert werden.

Calciumsulfatestrich (CA)

Unter Calciumsulfatestriche (CA) werden Estriche zusammengefasst, deren Bindemittel auf Calciumsulfathalbhydrat oder auf wasserfreiem natürlichem oder synthetischem Calciumsulfat (sogenannter Anhydrit) besteht. Mit Wasser reagierend entsteht Calciumsulfatdihydrat (Gips). Calciumsulfatestriche werden nach DIN EN 13813 mit CA (vom englischen „calcium sulfat screed“) gekennzeichnet und umgangssprachlich häufig als Anhydritestrich bezeichnet.

Aufgrund des geringen Schwindverhaltens weisen CA nicht das für Zementestrich übliche Schüsseln bzw. spätere Randabsenkungen auf und können großflächig (bis zu 1000 m²) ohne Dehnfugen verlegt werden. Bewegungsfugen der Unterkonstruktion sind jedoch trotzdem zu übernehmen und bei Kombination mit einer Fußbodenheizung sind auch Dehnungsfugen vorzusehen. Sie werden als konventionell zu verarbeitender Estrich oder als Fließestrich eingebaut und sind mit 2–3 Tagen früh begehbar. Calciumsulfatestriche sollten frühestens nach 5 Tagen höher belastet werden. Als Fließestriche können CA nach DIN 18560-2 auch mit CAF gekennzeichnet werden. CAF haben die weiteren Vorteile der schnellen, verarbeitungsfreundlichen Verlegung, der geringeren Estrichdicke und der guten Wärmeleitfähigkeit bei Heizestrichen.

Calciumsulfatestriche sind ökologisch und biologisch unbedenklich und benötigen außerdem keine Nachbehandlung. Allerdings muss der Estrich nach dem Einbringen mindestens zwei Tage auf mindestens 5 °C warm gehalten werden und vor schädlichen Einwirkungen wie zum Beispiel Schlagregen, zu starker Erwärmung oder Zugluft geschützt werden

CA sind nicht wasserbeständig und dürfen keiner andauernden Durchfeuchtung ausgesetzt werden. Sie sind deshalb nicht für den Einsatz in gewerblichen Nassräumen oder für Außenanwendung geeignet. In häuslichen Feuchträumen (z. B. Bad) werden sie durch eine Verbundabdichtung geschützt.

Bei späterer Durchfeuchtung ist ein höheres Schimmelrisiko als bei Zement- oder Gussasphaltestrich zu erwarten.

Vor Belagsverlegung bzw. Voranstrich muss der CA auf eine Restfeuchte von 0,5 %, als Heizestrich auf 0,3 % heruntertrocknen. Die Restfeuchte wird mit einem CM-Messgerät ermittelt.

Calciumsulfatestrich gilt als normaler Bauschutt, wenn keine organischen Bestandteile >5 % vorhanden sind.

Magnesiaestrich (MA)

Magnesia­estrich MA (von Magnesite screed) ist auch unter der früheren Bezeichnung als Steinholz bekannt. Nach 1945 war Zement rationiert, Magnesit nicht. Deshalb ist er in vielen Altbauten zu finden. Magnesia ist vielen von Turnwettbewerben als „Trockenmittel“ für die Hände bekannt. 1867 entdeckte Stanislas Sorel, dass Magnesia mit Magnesiumchlorid zu einer zementartigen Masse erstarrt. MA ist leicht einfärbbar und wurde oft mit Holzmehl oder Holzstückchen vermischt.

Magnesiaestrich wird heute nach DIN 14016 aus kaustischer Magnesia (MgO) und einer wässrigen Magnesiumsalzlösung (MgCl2, MgSO4) hergestellt. Als Zuschlag werden anorganische oder organische Füllstoffe verwendet. Außerdem wird teilweise Farbpigmente hinzugegeben

Sein besonderer Vorteil ist das geringe Gewicht und, aufgrund seiner Leitfähigkeit die Einsatzmöglichkeit als antistatischer Fertigboden. Außerdem weist er gute Wärme- sowie Schalldämmungswerte auf. Sein großer Nachteil ist die Feuchteempfindlichkeit und Korrosivität gegenüber Metallen, da bei Wasserzugabe das enthaltene Chlorid und Magnesiumhydroxid „ausgewaschen“ werden und der MA aufquillt. Er darf nie direkt mit wässrigem Mörtel in Kontakt kommen. Eine typische Verwendung heute ist die Verwendung als Nutzestrich für große trockene Flächen.

Wie die meisten anderen Estrichmörtel auch, muss Magnesiaestrich unverzüglich nach dem Mischvorgang eingebaut werden. Während des Einbaus und die folgenden zwei Tage muss die Temperatur über 5 °C gehalten werden. Außerdem ist der frische Mörtel für mindestens zwei Tage vor Wärme, Schlagregen und Zugluft zu schützen. Der Estrich ist frühstens nach zwei Tagen begehbar und sollte mindestens fünf Tage nicht höher belastet werden. Weiterhin ist Magnesiaestrich über Spannbetondecken wegen der hohen Korrosionsgefahr unzulässig.

Faserbewehrte Estriche

Eine Bewehrung für Estriche ist nach DIN 18560 grundsätzlich nicht erforderlich. Sinnvoll ist sie hauptsächlich bei Zementestrichen auf Dämmschichten zur Aufnahme von Stein- oder Keramikbelägen. Neben der Möglichkeit einer Bewehrung mit Estrichgittern gibt es die Faserbewehrung. Die Estrichgitter sind auf weichen Dämmschichten schwer lagegenau einzubauen und erschweren darüber hinaus den sauberen Einbau einer Estrichschicht, besonders auf Dämmschichten oder bei Heizelementen. Eine Faserbewehrung ist hingegen einfach einzubauen, die Fasern (Stahlfasern, alkalibeständige Glasfasern, Kunststofffasern) werden dem Estrichmörtel zugemischt. Eine Faserbewehrung wird hauptsächlich zur Verminderung von Rissen eingesetzt. Eine vollständige Vermeidung von Rissen kann auch mit einer Faserbewehrung nicht erreicht werden. Die Funktion einer konstruktiven Bewehrung können Fasern erst bei höherer Menge, welche bei Estrichen unüblich sind, übernehmen. Die Zugabe von Fasern kann die Bildung von Schrumpf- und Frühschwindrissen im Estrich verringern. Anzumerken ist jedoch, dass eine Faserzugabe die Konsistenz des Estrichmörtel herabsetzt und so die Verarbeitung erschwert. Gegenüber früher üblichen Stalhbewehrungsmatten ist eine Faserbewehrung deutlich preisgünstiger.

Zementestriche

Für alle zementgebundenen Estriche empfehlen sich alkaliresistente (AR) Glasfasern. Diese sind auch bei der alkalischen Umgebung im Zement beständig. Besonders sinnvoll ist die Verwendung bei Heizestrichen oder Untergründen für keramische oder Natursteinbeläge.

Konstruktionsarten

Bei den Konstruktionsarten des Estrichs wird nicht nach Estrichbindemitteln, sondern nach der Bauweisen bzw. der Konstruktionsart unterteilt.

Verbundestrich

Der Verbundestrich wird direkt auf dem tragenden Untergrund aufgetragen und ist mit diesem kraftschlüssig verbunden. Da alle Kräfte direkt in den Untergrund abgeleitet werden, ist die Tragfähigkeit durch den Untergrund, i. d. R. eine Betondecke, bzw. durch die Druckfestigkeit des Estrichs begrenzt.

Die Estrichdicke spielt somit nicht die entscheidende Rolle. Bei einschichtigen Zement-, Calciumsulfat-, Magnesia- oder Kunstharzestrichen sollte die Nenndicke maximal 50 mm betragen. Bei Gussasphaltestrichen zwischen 20 und 40 mm. Das Wichtigste bei der Herstellung eines Verbundestrichs ist die richtige Untergrundvorbereitung, damit es zu keinen Hohllagen kommt und der Verbund zwischen Estrich und Untergrund gewährleistet ist. Dazu ist der Untergrund gründlich zu reinigen. Er sollte außerdem möglichst frei von Rissen sein. Für einen guten Verbund kann es auch sinnvoll sein eine Haftbrücke, zum Beispiel aus einer Kunststoffdispersion oder –emulsion, auf die Tragschicht aufzutragen. Ebenso ist ein teilweise Strahlen oder Fräsen, und gegebenenfalls ein Vornässen der Tragschicht erforderlich. Sind Rohrleitungen oder Kabel auf dem Untergrund müssen diese in einen Ausgleichsestrich eingebettet werden. Auch wenn der tragende Untergrund nicht eben genug ist, ist ein ebener Ausgleichsestrich einzubauen, auf dem anschließend der Verbundestrich gebaut werden kann. Besonders bei hohen dynamischen Lasten ist ein Verbundestrich zu wählen. Es gilt die DIN 18560-3.

Estrich auf einer Trennschicht bzw. Trennlage

Eine weitere Möglichkeit einen Estrich zu konstruieren ist als Estrich auf Trennschicht. Dabei befindet sich zwischen dem tragenden Untergrund und dem Estrich eine dünne Schicht, die die Bauteile voneinander trennt. Diese Schicht besteht in der Regel aus zwei Lagen, so dass der Estrich vom tragenden Untergrund entkoppelt wird und eine spannungsfreie Bewegung möglich ist. Bei Calciumsulfat- und Gussasphaltestrich ist die Trennschicht nur einlagig auszuführen. Auch an den angrenzenden Wänden wird die Trennschicht und zusätzlich ein Trennstreifen zur Verhinderung von Einspannung verlegt. Als Material für die Trennschicht wird zum Beispiel Polyethylenfolie, kunststoffbeschichtetes Papier, bitumengetränktes Papier oder Rohglasvlies verwendet.

Die Estrichkonstruktion mit Trennschicht wird zum Beispiel bei hohen Biegebeanspruchungen in der Tragkonstruktion eingesetzt oder wenn der Tragbeton wasserabweisend ist. Um den Boden vor aufsteigender Feuchtigkeit zu schützen kann eine Abdichtung eingebaut werden, die zudem auch als eine Lage der zweilagigen Trennschicht gezählt wird.

Für eine funktionierende Konstruktion ist es wichtig, dass der tragende Untergrund eine ebene Fläche ohne unregelmäßige Erhebungen oder störende Rohrleitungen ist. Das Kriechen und Schwinden und die damit einhergehenden Verformungen des Rohbetons können die Ebenheit zusätzlich beeinflussen. Das kann dazu führen, dass die Bewegung des Estrichs eingeschränkt wird und sich durch Zwangsspannungen Risse bilden. Bei einem Altbau ist das Risiko in der Regel nicht mehr gegeben, da im älteren Untergrund so gut wie keine Schwindeffekte mehr auftreten.

Für einen Estrich auf Trennschicht (DIN 18560-4) werden die erforderlichen Festigkeits- bzw. Härteklassen in der DIN EN 13813 geregelt

Estrich auf einer Dämmschicht („schwimmender Estrich“ bzw. „Heizestrich“)

Eine weitere Konstruktionsart ist der Estrich auf Dämmschicht. Der Estrich liegt dabei auf einer Dämmschicht auf und wird seitlich von Dämmstreifen ummantelt, so dass keine direkte Verbindung zu dem angrenzenden Untergrund und den Wänden besteht, der Estrich „schwimmt“ sozusagen. Der Estrich wird dabei auf einer wasserundurchlässigen Folie verlegt, die die Dämmschicht vor Durchfeuchten schützt und die Schallübertragung weiter abdämpft. Sind in dem Estrich oder der Dämmschicht Heizelemente eingebaut, so spricht man von einem Heizestrich.

Die Dämmschicht hat die Funktion der Trittschalldämmung oder der Wärmedämmung. Zudem ist es möglich mehrere Dämmschichtlagen einzubauen. Als Dämmschicht werden meist Dämmmatten oder –platten verwendet. Typische Materialien sind z. B. Polystyrol-Hartschaum (EPS), extrudierter Polystyrol-Hartschaum (XPS), Mineralfasern (Stein- oder Glaswolle) oder Holzweichfasern. Bei der Wahl des Dämmmaterials ist die Verformungsstabilität eine entscheidende Eigenschaft.

Aufgrund der weichen Dämmschicht kommt es immer wieder zu Schäden durch Absenkungen bei schwimmenden Estrichen. Verantwortlich können dafür zu hohe Lasten sein, die besonders in Plattenecken problematisch sind. Durch eine übermäßige Last kann ein einspannender Effekt entstehen wodurch der Estrich seinen schwimmenden Charakter verliert. Besonders das Problem des sogenannten „Aufschüsselns“ ist ein wiederkehrendes Problem.

Bei einem Heizestrich gibt es verschiedene Bauarten. So können die Heizelemente innerhalb (Bauart A), unterhalb des Estrichs (Bauart B) oder in einem Ausgleichsestrich (Bauart C) angeordnet sein.

Normenrechtlich gilt die DIN 18560-2, neben diversen Merkblättern des ZDB (Zentralverband des Deutschen Baugewerbes) und des BEB (Bundesverband Estrich und Belag). Des Weiteren müssen Messstellen für die CM-Feuchtemessung ausgewiesen werden, je Raum mindestens 2 Messstellen, und bei Räumen über 50 m² mindestens 3. Bei Heizestrichen mit mehr als 8 m Seitenlänge oder mehr als 40 m² Fläche müssen unbedingt Bewegungsfugen eingebaut werden.

 

 

 

 

 

Belegereife

Eine Definition der Belegreife lautet: „Die Belegreife ist der erreichte Zustand eines Estrichs in Bezug auf Abbinde- und Trocknungsreaktionen, in dem er für die schadens- und mangelfreie, dauerhafte Aufnahme eines Belags geeignet ist.“ Dazu werden drei wesentliche zeitabhängige Parameter genannt:

• Ausreichende Trocknung

• Ausreichende Festigkeit

• Ausreichender Schwindungsabbau

Üblicherweise wird die Belegreife aber nur an der ausreichenden Trocknung festgemacht, dazu wird die CM-Messung verwendet. Ein Estrich muss die sogenannte Gleichgewichtsfeuchte erreicht haben damit er als belegreif gilt. Das bedeutet, dass sein Wassergehalt im Gleichgewicht mit der umgebenden Raumluft steht. Für Naturstein und Keramik ist zudem auch die Verformungsstabilität entscheidend, während bei Parkett bzw. Weichboden, wie PVC, Linoleum oder Kautschuk die Feuchtigkeit ausschlaggebend ist.

Für den Natursteinbereich bedeutet es, dass die zu erwartende Schwindung des Estrichs so weit wie möglich abgeschlossen sein muss. Bei zu hoher Raumtemperatur oder eingeschalteter Fußbodenheizung wirkt der Estrich zwar trocken, ist aber noch lange nicht belegreif. Für die mit Wasser angemischten Estrichmörtel sind ausreichend lange Trocknungszeiten (inkl. Aushärtung) einzuhalten.

Je nach Luftwechsel, Raumtemperatur, relativer und absoluter Luftfeuchte kann sich diese Zeit erheblich verlängern. Die Werte für die zulässige Restfeuchte bis zur Belegreife sind abhängig von der Estrichart, von der unbeheizten oder beheizten Konstruktion und von der späteren Belagsart. Eine Zwangstrocknung kann zu einer unterbrochenen Hydratation führen und bei späterem Feuchteeintrag (Mörtel des Oberbelags) Verformungen mit Rissbildung hervorrufen. Die Richtwerte für den Feuchtegehalt bei Belegreife nach der CM-Methode betragen für beheizte Zementestriche 1,8 CM-% (bei unbeheizt 2 CM-%). Wenn der gemessene Wert den Richtwert unterschreitet ist der Estrich belegreif.

Bei Calciumsulfatestrichen ist eine erhöhte Trockenheit notwendig. Der Richtwert liegt bei 0,3 CM-% (bei unbeheizt 0,5 CM-%). Außerdem sind Calciumsulfatestriche vor aufsteigender Feuchtigkeit oder Wasserdampfdiffusion mit Dampfsperren und Abdichtungen zu schützen.

Die angegebenen Werte entsprechen CM-%. Diese Werte werden mit einem Calciumcarbid-Messgerät (CM-Gerät) ermittelt. Die CM-Messung ist normativ vorgeschrieben. Dabei wird eine kleine Menge Estrich aus dem vorhandenen Estrich entnommen, zerkleinert und unter Zugabe von Calciumcarbid in einer Stahldruckflasche aufgeschüttelt. Das Calciumcarbid reagiert unter Druckanstieg mit dem Restwasser zu dem Gas Ethin (Acetylen). Der Druck wird mittels Manometer gemessen und kann mit einer Eichtabelle auf CM-% umgerechnet werden. Mit Zusätzen, die so genannte „schnell trocknende Estriche“ enthalten, kann die Belegreife ggf. verkürzt werden. Diese Schnellestriche sind keine normgerechten Estriche, sondern Sonderkonstruktionen. Sie sind daher mit Vorsicht zu benutzen, weil teilweise keine sicheren Aussagen über die Belegreife gemacht werden können, es muss sich auf die Angaben des Herstellers verlassen werden.

Trockenestriche

Unter einen Trockenestrich versteht man einen Estrich aus vorgefertigten Teilen, die auf der Baustelle kraftschlüssig miteinander verbunden werden. Daher ist er auch unter dem Namen „Fertigteilestrich“ oder „Trockenunterboden“ bekannt. Alle Trockenestriche sind nicht normativ erfasst. Es handelt sich hierbei generell um Sonderkonstruktionen, die besonders beauftragt werden müssen. Hierbei hat der Planer eine wesentlich höhere Verantwortung bzw. Planungshaftung. Es gilt die VOB/C ATV DIN 18340 „Trockenbauarbeiten“ und für Fertigteileestriche aus Holzspanplatten ist die DIN 68771 zu beachten.

Bei Trockenestrichen kommen nachfolgende Materialien zum Einsatz:

• Holzspanplatten (auch zement- oder magnesitgebunden)

• OSB-Platten, Hartholzfaserplatten

• Gipsfaserplatten, Gipskartonplatten

• Beton- und zementäre Estrichplatten.

Bei unebenen Untergründen ist eine Einebnung notwendig, z. B. durch eine Schüttung. Diese besteht je nach System z. B. aus Tonkügelchen, Kunststoffen oder anderen Materialien. Eine Spachtelung des Untergrunds wäre bei kleineren Unebenheiten möglich. Hierbei sind aber das unterschiedliche Ausdehnungsverhalten und eine Reaktion auf dynamische Lasten zu berücksichtigen (Bauphysik). In Nassbereichen ist zusätzlich die Belastbarkeit durch Feuchte zu berücksichtigen. Es ist erforderlich, dass die einzelnen Fertigteilplatten zu einer tragenden Estrichplatte konstruktiv verbunden werden. Dazu gibt es die folgenden vier Verbindungsarten:

• Stumpf gestoßen und verklebt

• Geklebtes Verbindungssystem mit Nut und Feder

• Breiter Stufenfalz, geklebt oder verschraubt mit Verklebung

• Zweilagige Verlegung mit versetzten Fugen, Lagen ganzflächlig verklebt/verschraubt

Vor- und Nachteile von Trockenestrichen

  • Vorteile von Trockenestrichen:
    • keine Wartezeit durch Trocknung,
    • keine Trocknungsprotokolle,
    • keine CM-Messung notwendig,
    • keine Feuchtigkeitsbelastung des Baukörpers,
    • teilweise leichterer Aufbau, analog einem Magnesitestrich,
    • geringere Konstruktionshöhen als konventionelle Estriche sind möglich,
    • größere Höhendifferenzen sind durch Schüttungen ausgleichbar, dadurch geringere Gewichtsbelastung.
    • bei Fußbodenheizung weniger Masse betroffen, daher schneller aufheizbare Räume.
  • Nachteile von Trockenestrichen:
    • ebener Untergrund ist erforderlich (Schüttung, Spachtelung),
    • die Kombination Konstruktion und Belagsart muss ggf. von einem Bauphysiker errechnet werden,
    • geringere Belastbarkeit bei dynamischen Lasten, wie zum Beispiel Rollstühle,
    • Standardtabellen für Trittschalldämmung sind nicht anwendbar,
    • bei Fußbodenheizungen sind Temperaturobergrenzen zu beachten,
    • die Feuchteempfindlichkeit hängt vom Estrichmaterial und dem System des Höhenausgleichs ab,
    • Standardtabellen zur Wärmeleitfähigkeit bei Heizungen sind nicht anwendbar,
    • höhere Kosten,
    • generell Sonderkonstruktionen mit höherem Haftungsrisiko für den Planer und die ausführenden Unternehmen.

Normen

Die geltenden Normen für Estriche sind innerhalb der EU:

  • DIN EN 13318 Estrichmörtel und Estrich-Begriffe
  • DIN EN 13813 Estrichmörtel und Estrichmassen – Eigenschaften und Anforderungen
  • DIN EN 13892 Prüfverfahren für Estrichmörtel und Estrichmassen, Teil 1 bis 8

Zusätzlich gilt in Deutschland:

  • DIN 18560 Estriche im Bauwesen, deutsche Anwendungsregeln
    • Teil 1: Allgemeine Anforderungen, Prüfung und Anwendungsregeln
    • Teil 2: Estrich und Heizestriche auf Dämmschichten
    • Teil 3: Verbundestriche
    • Teil 4: Estriche auf Trennschicht
    • Teil 7: Hochbeanspruchte Estriche (Industrieestriche)

Konformitätskontrolle

Die Konformitätskontrolle bei normativ erfassten werkgefertigten Estrichen umfasst die Erstprüfung und eine werkseigene Produktionskontrolle bzw. Eigenüberwachung.

Eine Erstprüfung muss bei Produktionsbeginn des Estrichs bzw. vor der Herstellung eines jeweils neuen Produktes oder aber bei Veränderungen von Reaktanten durchgeführt werden. Auch eine Veränderung und eine Umstellung des Herstellverfahrens erfordern eine jeweilige Erstprüfung. Die erforderlichen Prüfungen für die jeweilige Estrichtart ist in der DIN EN 13813 geregelt.

Bei sogenannten Baustellenestrichen erfolgen eine Prüfung der Lieferscheine sowie eine Sichtprüfung der Edukte. Der Herstellungsvorgang als solcher muss in regelmäßigen Abständen kontrolliert werden. In Ausnahmefällen kann eine Erhärtungsprüfung anfallen und in Sonderfällen, wenn erhebliche Zweifel an der Güte des Estrichs im Bauwerk bestehen, kann auch eine Bestätigungsprüfung notwendig sein

Quelle:wikipedia

Parkett

Parkett ist ein Fußbodenbelag aus Holz oder Bambus für Räume in geschlossenen Gebäuden. Das Holz, in der Regel Hartholz von Laubbäumen, wird dazu in kleine Stücke gesägt und nach bestimmten Mustern zusammengesetzt. Holzböden, bei denen die Jahresringe sichtbar sind, d. h. die Fasern vertikal stehen, nennt man Holzpflaster (Holzstöckelpflaster). Einen großformatigen Holzboden aus langen Brettern nennt man Dielenboden. Parkett gilt als hochwertiger Fußbodenbelag, benötigt wegen des Aufbaus aus kleinteiligen Holzstücken im Gegensatz zum Dielenboden einen tragfähigen Untergrund, wirkt aus demselben Grund aber Fugenbildung entgegen. Durch seine geschlossenen Flächen ist er sehr hygienisch.

Holz

Traditionelle europäische Holzarten, die zu Parkett verarbeitet werden, sind vorwiegend Eiche und Buche. Außereuropäische Holzarten für Parkett sind etwa Teak/Burma, Palisander, Kambala, Afzelia (Doussie), Jatoba, Cabreuva, Eukalyptus, Mutenye, Bongossi/Azobe, Kosipo, Kotibe, Landa, Limbali, Louro vermelho, Peroba und andere. Es sind durchwegs robuste Harthölzer. Bei Mehrschichtparkett kommen als Träger auch Holzwerkstoffe zum Einsatz.

Vom Parkett zu unterscheiden ist ein Laminatbelag. Laminatbeläge bestehen aus Holzfaserstoffen als Träger und sind mit Melaminharz beschichtet; die sichtbare Holzoberfläche besteht hier aus einer einlaminierten Papierlage im Holzmuster (mit Melaminharz imprägnierte Dekorschicht). Die Verlegung der Laminatböden erfolgt in gleicher Art wie Parkett. Durch die Kunststoffoberfläche wird hier keine Feuchtigkeit aufgenommen, jedoch ist über die Fugen eine Feuchtigkeitsaufnahme möglich. So kann es beispielsweise beim Nasswischen zu irreversiblen Aufquellungen der Nähte kommen, wodurch der Bodenbelag unbrauchbar wird.[1] Laminat wird deshalb in der Regel trocken bis maximal nebelfeucht gereinigt.

Ein Parkettboden ist teurer als ein Laminatboden, dafür kann Parkett durch Schleifen und Versiegeln in der Regel mehrfach renoviert werden, was bei Laminat nicht möglich ist. Parkett ist im Verhältnis zu einem Textilboden ein sehr dauerhafter Bodenbelag. Es gibt Parkettböden in Schlössern, die nach Jahrhunderten noch attraktiv sind, hier haben aber meistens kostspielige Aufarbeitungen des Parketts stattgefunden.

Der Härtegrad von Parkettböden wird im Allgemeinen in Brinell angegeben.

Bambus

Seit Mitte der 1990er Jahre wird in zunehmendem Umfang auch Bambus, der kein Holz im strengen Sinne, sondern ein verholztes Gras ist, zu Parketten verlegt. Bambusparkett ist, weil das Material so schnell wächst, um ein Vielfaches preiswerter als Holzparkett, überdauert je nach Qualität und Belastung aber nur 10–25 Jahre. Die Feuchtigkeitstoleranz und Schimmelresistenz ist etwas höher als bei Holz. Einige Produkte bleichen in starkem Sonnenlicht aus. Die Verlegung erfolgt entweder durch Annageln oder durch Nut-Feder-Verbindungen. Moso-Bambus ist härter als viele Holzsorten (z. B. Ahorn, Eiche). Natürlich gefärbter Bambus ist härter als künstlich gedunkelter (carbonizedcarmelized).[2][3][4] Die Härte von Bambusparkett wird, wie die von Holzparkett, nach dem Janka-Härte-Test bestimmt. Nasswischen führt bei Bambusparkett, ebenso wie jede andere übermäßige Wassereinwirkung, zu Verformungen.[5]

Da Bambus, anders als Holz, nicht in großen sägbaren Stämmen wächst, muss er, um in Brettform zu gelangen, in allen Fällen stark bearbeitet werden. Je nach Herstellungsverfahren werden drei Arten von Bambusparkett unterschieden:

  • Solid Bamboo – die billigste Art von Bambusparkett – ist aus getrockneten Bambusstreifen gemacht, die entweder horizontal oder vertikal neu zusammengelegt, verklebt und dann zu Brettern verpresst werden.[6] Solid Bamboo und Engineered Bamboo enthalten nicht nur Klebstoffe, sondern in geringen Mengen auch Formaldehyd.[7]
  • Engineered Bamboo wird ähnlich wie Solid Bamboo hergestellt, aber nicht zu massiven Brettern verarbeitet, sondern wie ein Furnier in 1 bis 2 Millimetern Stärke auf Sperrholz oder Spanplatte aufgeklebt.[6]
  • Strand Woven Bamboo (Stranded BambooFossilized Bamboo) ist am aufwendigsten hergestellt und infolgedessen auch am teuersten: Der Bambus wird zerfasert, von fragilen Fasern befreit, kreuzweise neu verflochten, erhitzt und gepresst. Das fertige Produkt sieht nicht mehr wie Bambus, sondern je nach Verarbeitung wie Holz oder meliertes Fantasieholz aus, ist aber extrem hart und robust. Die Oberfläche braucht nicht versiegelt zu werden. Bei Bedarf kann das Parkett wie Holzparkett abgeschliffen werden.[4] Stranded Woven Bamboo enthält meist Phenolformaldehyd, das als weniger giftig gilt als Formaldehyd.[7]

Arten von Parkett

Massivparkett

Massivparkett besteht aus Massivholzstücken; mehrere Ausführungsarten werden unterschieden: Massivparkett wird üblicherweise roh verlegt und dann mit der Parkettschleifmaschine in mehreren Schleifgängen abgeschliffen. Anschließend erfolgt die Oberflächenbehandlung mit Parkettlack, Fußbodenöl oder Wachs. Die fortschreitende technische Entwicklung führte zur Herstellung von kalibriertem Massivparkett mit bereits werkseitig aufgebrachten Oberflächenbehandlungen. Gegenwärtig ist Massivparkett auch als Fertigparkett von einigen Herstellern erhältlich. Hierbei entfällt das Schleifen und Endbehandeln auf der Baustelle.

Massivparkette, insbesondere Mosaik-, Hochkantlamellen- und Lamparkette, aber auch Holzpflaster, wurden in den 1950er bis 1970er Jahren mit teer- oder bitumenhaltigen Klebern auf Zement- oder Asphaltestriche verklebt. Diese Kleber sind oft mit krebserzeugenden PAK (polyzyklische aromatische Kohlenwasserstoffe) belastet, eine Demontage und Entsorgung eines solchen Parketts sollte nur von Fachunternehmen durchgeführt werden. Ein so verklebtes Parkett kann zur potentiellen Gefahrenquelle werden, da unter bereits gelockerten Parkettteilen die Klebermasse durch Trittbelastung zermahlen und über die Fugen im Parkett in die Raumluft und in den Hausstaub gelangen kann. Die Bewohner nehmen freigesetzte PAK dann über Atemluft, Nahrung oder durch Hautkontakt auf. Besonders kleine Kinder sind gefährdet, wenn sie auf dem Fußboden spielen und aufgewirbelten Staub einatmen. Verdächtig ist Kleber, wenn seine dunkle Farbe auf Teer- bzw. Bitumenanteile hinweist und das Parkett vor Ende der 1970er Jahre verlegt wurde. Der Kleber sollte dann in einem Labor auf PAK geprüft werden.

Stabparkett (Massivparkett)

Stabparkett besteht aus einzelnen Holzstücken (Stäben); traditionell meist in den Abmessungen von 400–500 mm × 60–80 mm × 22 mm. Es gibt aber auch dünnere Parkettstäbe und Stäbe mit 2- oder mehrschichtigem Aufbau (Stab-Fertigparkett). In die Seiten ist eine umlaufende Nut gefräst, in die eine Feder genannte Holzleiste gesteckt wird, wodurch der Verbund zwischen den einzelnen Brettchen hergestellt wird. Diese Form des Parketts ist die klassische Form. Sie wird auf den tragenden Unterboden aus Holz genagelt, und zwar von der Seite schräg durch die Feder, so dass der Nagel durch den benachbarten Parkettstab verdeckt wird. Eine andere Bezeichnung für diese Parkettart lautet Nagelparkett (Norm E DIN EN 13226). Parkettstäbe mit fester angehobelter Nut beziehungsweise Feder werden auch als Parkettriemen bezeichnet. Inzwischen werden Parkettstäbe häufig auch auf den Untergrund geklebt, wodurch bei einer Fußbodenheizung ein etwas besserer Wärmeübergang erreicht wird.

Mosaikparkett (Massivparkett)

Mosaikparkett besteht aus kleineren und vor allem dünneren Holzlamellen mit 8 bis 10 mm Stärke, in der Regel auf Netz geklebt. Standardmäßig werden quadratische Lamellen mit einer Kantenlänge von 12 oder 16 cm verlegt. Das unbehandelt gelieferte Parkett wird nach dem Verkleben geschliffen und die Oberfläche lackiert oder geölt/gewachst. Seine geringe Aufbauhöhe ist ein großer Vorteil bei einer Fußbodenheizung, da der Wärmedurchgang wenig behindert wird. Auch wenn ein anderer Bodenbelag durch Parkett ersetzt werden soll, ist die geringe Dicke des Mosaikparketts von Vorteil. Häufig findet auch Mosaikparkett in einem englischen Verband und im Parallelverband Verwendung.

Lamparkett (Massivparkett)

Lamparkett ist dem Stabparkett in seiner Stablänge von 120 bis 400 mm und Stabbreite von 40 bis 65 mm ähnlich, jedoch ist es nur 10–11 mm stark. Die Verlegung und die Eigenschaften ähneln dem Mosaikparkett (Norm: Vollholzlamparkett nach E DIN 13227). Es trägt auch die Beinamen Dünnparkett oder Dünnstab.

Hochkantlamellenparkett (Massivparkett)

Hochkantlamellenparkett

Hochkantlamellenparkett (HKL) besteht wie das Mosaikparkett aus einzelnen Vollholzlamellen mit einem Querschnitt von meist ca. 8 mm × 22 mm. Dieses Parkett ist ein sogenanntes Restprodukt aus der Mosaikparkett-Produktion. Die einzelnen Lamellen werden hochkant angeordnet und durch Papierstreifen, Kunststoffnetze oder Klebebänder in Verlegeeinheiten zusammengehalten. Durch die größere Stärke von 22 mm kann das Parkett häufiger geschliffen werden und wird deshalb vorwiegend im gewerblichen Bereich verwendet. Es trägt daher auch den Beinamen Industrieparkett. Hochkantlamellenparkett findet wegen seiner beliebten Optik als Designboden in letzter Zeit vermehrt auch im Wohnbereich und in öffentlichen Einrichtungen wie Schulen, Museen oder Ausstellungszentren Verwendung.

Heutzutage wird auch immer häufiger Hochkantlamellenparkett in der Stärke 10 mm verwendet, seltener auch 16 mm.

Parkettdiele

Massive Parkettstäbe werden zu einer Diele verleimt. Üblich sind zwei oder drei parallele Stabreihen. Die Bretter sind meistens 2–3 Meter lang.

Massivdiele

Massivholzdielen bestehen aus einem Stück Holz (massiv) und haben ein großflächiges Format (min. 12 cm breit und 1,20 m lang). Wenn sie zur Fixierung auf Unterkonstruktion vorgesehen sind, beträgt die Stärke meist 21 mm, ist aber auch schwächer, wenn zur flächigen Verklebung vorgesehen.

Tafelparkett

Aufwändiges dekoratives Tafelparkett

Tafelparkett heißt auch französisches Parkett und wird als die „Königin unter den Parkettfußböden“ gesehen. Geometrische Muster werden zu quadratischen Tafeln verleimt, etwa Rauten und Sterne derart, dass sich weitere komplexe Muster ergeben. Häufig werden verschiedenfarbige Hölzer verarbeitet. Bei der Gestaltung des Bodens wird die spätere Nutzung des Raumes berücksichtigt. Häufig wird ein Tafelparkett-Boden mit einem umlaufenden Fries verlegt.

Mehrschichtparkett

Das Patent für das Mehrschichtparkett stammt aus dem Jahr 1939 von Johann Kähr (Lamellenplatte). 1941 führte das Unternehmen Kährs das weltweit erste „Fertigparkett“ ein. Es hat auf Grund seines 3-schichtigen Aufbaus eine höhere Verwerfungsfestigkeit und kann deshalb auch lose, ohne vollflächige Verklebung, oft in einem Klick-System auf eine Unterlagsmatte verlegt werden. Es kann aber auch problemlos ohne Unterlagsmatte fest verklebt werden, dadurch werden die Lebensdauer und das Raumschallverhalten (durch Begehen, Fallenlassen von Gegenständen etc.) deutlich verbessert, hingegen verschlechtert sich das Trittschallverhalten (Schall in untenliegenden und angrenzenden Räumen). Je nach akustischer Anforderung kann das Verkleben daher mehr oder weniger zu empfehlen sein.

Bei den Klicksystemen unterscheidet man „kraftschließende“ und „formschließende“ Systeme. Bei den kraftschließenden Systemen erfolgt die Verbindung der Dielen durch die Überwindung eines Widerstands, der nachher die Dielen zusammenhält, z. B. ein kleiner Vorsprung im Holz. Häufig müssen bei diesem Verfahren die Dielen vertikal eingeklopft werden. Der Nachteil des Systems ist, dass vielfach noch geleimt werden muss oder die kleinen Vorsprünge sich abnutzen, was zu hässlichen Fugen führt. Das formschließende System (Woodloc, lock-it, smart-lock usw.) ist ein Winkelsystem. Hier werden die Dielen in eine CNC-gefräste Form von oben eingewinkelt.

Die sichtbare Oberflächenschicht aus der jeweils prägenden Holzart ist hier oft nur noch 2 bis 4 mm dick und auf einer oder mehreren Trägerschichten aus billigerem Nadelholz oder auf eine Trägerplatte aus Holzwerkstoff geklebt. Bei den Mehrschichtern hängt die Belastbarkeit nicht nur von der Holzart, sondern auch vom Gesamtaufbau, von der Stärke der Nutzschicht und von Art und Güte der Mittellage ab. Daher wird empfohlen, auf die Qualität des Materials zu achten.

Diese Platten erhalten Nut und Feder zur Verlegung, die in das Nadelholz eingearbeitet sind. Das Schleifen nach der Verlegung entfällt hier, da die einzelnen Elemente bereits fertig geschliffen und oberflächenbehandelt sind. Geringe Höhenunterschiede (< 0,1 mm) zwischen den einzelnen Elementen werden deshalb nicht ausgeglichen. Fertigparkett lässt sich von gewöhnlichem Parkett leicht durch Betrachten gegen das Licht unterscheiden, wobei die Einzelelemente ihre makellose Glätte und scharfkantige Begrenzung zeigen. Mehrschichtparkett kann auch in rohem Zustand erworben werden und dann bauseitig behandelt werden, dadurch wird die Qualität verbessert, und es ist kaum noch von Massivparkett zu unterscheiden.

Die Lebensdauer von schwimmend verlegtem Mehrschichtparkett ist aufgrund seiner laufenden mechanischen Belastung nicht so hoch wie bei verklebtem Parkett, weil die Kippbewegungen bei den Fugen mit der Zeit zum Eindringen von Wasser führen können.

Entscheidend für die Qualität von Mehrschichtparkett ist a) die Qualität des Oberflächenlacks bzw. des Öles oder Wachses (denn hier findet die Belastung statt und nicht auf dem Holz), b) die Qualität der Dielenverbindung und c) die Verwendung hochwertiger Techniken (z. B. keine „Briefmarken“, stehende Jahresringe, Lamellenseitenverleimung).

Als Variante des Mehrschichtparkettes gibt es, neben dem Dreischichtparkett, auch Zweischichtparkett. Das erste 2-Schicht-Fertigparkett wurde 1975 vom Schweizer Unternehmen Bauwerk Parkett vorgestellt. Das erste 1-Stab-2-Schicht-Fertigparkett wurde in den 1980er-Jahren von diesem Hersteller und vom italienischen Unternehmen Margaritelli entwickelt, beide Unternehmen lieferten einander um die Patentrechte einen jahrelangen Rechtsstreit. Diese Parkettart muss vollflächig auf dem Untergrund verklebt werden, was die Lebensdauer wieder durchaus erhöhen und den Raumschall entscheidend verbessern kann. Zweischichtparkett gibt es als klassischen Einzelstab (ca. 490 × 70 mm), Schiffsböden und Landhausdielen (Längen und Breiten unterschiedlich).

Verlegemuster

Parquet massif chêne rustique chanfreiné.jpg Parallel-Verband: Die Stäbe werden auf gleicher Höhe parallel verlegt.

  • Schiffsboden-Verband, auch Wilder Verband: Parallel mit versetzten Stößen, wie die Beplankung auf einem Schiffsdeck.
  • Englischer Verband: Die Stäbe werden um die Hälfte versetzt parallel verlegt.
  • Oxford-Verband: Die Stäbe werden um ein Drittel versetzt parallel verlegt.
  • Altdeutscher Verband: Die Stäbe werden um die Hälfte versetzt parallel verlegt (wie englischer Verband), jedoch immer doppelt nebeneinandergelegt. An den Kopfstößen wird ein verkürzter, um 90 Grad gedrehter Stab dazwischen verlegt. Ein Flechtmuster entsteht.
Art-parket-asp.jpg Flechtboden: Durch nebeneinander paralleles Anbringen von Stäben (2 bis 4) und rechtwinkliger Drehung solcher Pakete zueinander entsteht eine Flechtoptik. Wie Würfel, nur zueinander verschoben.

  • Flechtboden mit Würfel: Um ein quadratisches Parkettstück herum werden Stäbe in Längs- und Querrichtung parallel und zueinander gelegt (Abb.).
  • Würfel-Verband, auch Tafelmuster, einzelne Stäbe werden zu Quadraten zusammengefügt, deren Richtung abwechselnd um 90° versetzt ist (Schachbrettmuster). Dazu muss allerdings die Länge des Stabes ein natürliches Vielfaches der Stabbreite sein, z. B. 49 × 7 cm.
Parkett 01 KMJ.jpg Fischgrät: Klassisches Verlegemuster mit interessantem Lichtspiel. Eher für große Räume geeignet.

  • Französisches Fischgrät: Die Parkettstäbe sind beidseitig um 45° oder 30° abgeschrägt. Zwischen den Zopfreihen verläuft eine durchgehende Kopffuge.
Parquet Buffon.JPG Leiterboden: Eine Reihe parallel nebeneinanderliegender Stäbe wechselt sich ab mit einer quer dazu liegenden Einzelreihe.

  • Kombination mit Fischgrätmuster (Abb.): Französisches Fischgrät

 

 

 

Quelle : Wikipedia.org

Laminat

Nahaufnahme eines Laminat-Fußbodens mit Strukturoberfläche und längsseitiger Fase (V-Fuge)

Als Laminatfußböden oder umgangssprachlich auch einfach „Laminat“ bezeichnet man einen Fußbodenbelag, der durch einen schichtweisen Aufbau aus hauptsächlich einer Holzfaserplatte, Papier und Melamin-Klebstoff besteht.

 

Geschichte und Marktvolumen

Laminatwerkstoffe werden bereits seit den 1920er Jahren für die Gebäudeausstattung eingesetzt, zum Beispiel für Arbeitsflächen, Fensterbretter oder Wandpaneele. Als Fußbodenbelag wurde Hochdrucklaminat (kurz „HPL“ für High Pressure Laminate) aber erst im Jahr 1977 von der schwedischen Firma Perstorp in Trelleborg entwickelt, die erste Laminatböden ab 1980 auf den Markt brachte.[1][2] Nach der raschen Etablierung von Laminatböden im Markt wurde das Geschäft unter der Marke „Pergo“ ausgegliedert, das Unternehmen hält bis heute zahlreiche Patente auf Schichtstoffoberflächen.[3] Die klebstofffreie Verbindung von Laminatdielen (Klicksysteme) wurde ab 1996 eingeführt, seit 2008 sind strukturierte Oberflächen verfügbar.[4] In Europa wurden 2010 von 20 Herstellern rund 400 Millionen Quadratmeter Laminatboden produziert, in Deutschland lag die Nachfrage in diesem Jahr bei mehr als 80 Millionen Quadratmetern.[5]

Aufbau und Herstellung

Aufbau

Der folgende Schichtaufbau versteht sich von der Oberseite (auf der man geht) zur Unterseite (welche auf dem Boden liegt):

  1. Deckschicht (Overlay)
    Die obersten Lagen eines Laminatfußbodens, das Overlay, haben die Funktion, einer hohen Beanspruchung des Fußbodens standzuhalten.
    Verwendung finden dünne Papiere, welche schon mit Melamin-Klebstoff getränkt wurden und so den Blick auf das darunter liegende Dekorpapier ermöglichen. Um die Abriebfestigkeit des Laminats zu erhöhen, wird auch Korund in den Klebstoff des Overlays gemischt.
  2. Dekorpapier
    Das Dekorpapier ist die optisch wahrgenommene Oberfläche.
    Auf ihm sind vor dem Fügen mit der Trägerplatte die Motive aufgedruckt worden. Eine Einschränkung in der Motivwahl gibt es faktisch nicht. Neben dem bekannten Aufdrucken von diversen Holzstrukturen sind andere Aufdrucke von Kies, geometrischen Formen oder künstlerischen Produkten möglich. Das Overlay und das Dekorpapier werden oft als eine Schicht geliefert, bei geringer Beanspruchung gibt es nur das getränkte Dekorpapier. Beim Hersteller ist so in der Regel nur ein Arbeitsgang nötig.
  3. Underlay
    Laminatprodukte der Klasse 33 und höher haben zwischen Dekorpapier und Trägerplatte noch ein Underlay (sog. Kraftpapier). Dieses Kraftpapier wird ebenfalls mit Melaminharzen imprägniert. Es sorgt später für eine erhöhte Widerstandsfähigkeit gegen Eindrücke, die Voraussetzung für das Erreichen der Klasse 33 und höher ist. Laminatböden der niedrigeren Beanspruchungsklassen nutzen in der Regel kein Underlay.
  4. Trägerplatte
    Die Trägerplatte besteht aus einer MDF-Platte bzw. einer HDF-Platte. Der Unterschied der beiden Produkte besteht lediglich in der höheren Verdichtung und der daraus resultierenden höheren Rohdichte der HDF-Platte. Der Holzfaserwerkstoff macht es möglich, in mehreren Fräsvorgängen ein Profil in die Trägerplatte zu schneiden, das die Montage selbst für Laien möglich macht. Die jeweiligen Profile variieren dabei von Hersteller zu Hersteller. Faserplatten können unter Wassereinwirkung aufquellen. Das Quellverhalten kann im Produktionsprozess durch den Einsatz entsprechender Leime und Zusätze verbessert werden.
  5. Gegenzug
    Auf der Unterseite der Trägerplatte wird ein weiteres Papier oder Kunststoffschicht aufgebracht.
    Die Gegenzugschicht ist dazu da, dass sich das Laminat bei Belastung durch die auftretenden Biegekräfte nicht verformt.
  6. (Verlegeunterlage)
    Es gibt Unternehmen, die unter das Papier auf der Laminatunterseite noch eine elastische Verlegeunterlage kleben. Diese muss dann nicht mehr separat vorverlegt werden. Einen ersten solchen Laminatboden brachte im Jahr 1999 die Firma MeisterWerke aus Rüthen auf den Markt.

Die Verbindung der sogenannten “Trittschalldämmung” mit dem Laminat hat den Vorteil, dass das Verlegen einer zusätzlichen Unterlage entfällt. Der Vorteil einer getrennten Trittschalldämmung besteht für generische Bodenbeschaffenheiten im Ausgleich von starken Unebenheiten. Trittschalldämmungen als Matten ab 3 mm gleichen starke Bodenunebenheiten aus und machen extreme Maßnahmen wie Vergiessen von Ausgleichsmassen zur Bodenvorbereitung obsolet. Vor Verlegung einer fest am Laminat verbundenen Trittschalldämmung sollte unbedingt die Ebenheit des Estrichs geprüft werden.

Herstellung

Auf die ausgekühlten und geschliffenen Trägerplatten wird das Dekorpapier und Overlay aufgebracht. Für diesen Arbeitsschritt werden meistens Laser zum Ausrichten der Papiere genutzt, damit beim späteren Verlegen keine Abweichungen im Dekorbild auftreten. Gleichzeitig wird der Gegenzug aufgebracht. Es folgt ein Heißpressen, bei dem der Melamin-Klebstoff aushärtet.
Im folgenden Arbeitsgang werden Nut und Feder bzw. mit mehreren Fräsköpfen Profile gefräst, welche zum Verbinden der einzelnen Laminatteile genutzt werden.

Heute sind einrenkbare[6] und/oder einrastende Verbindungen üblich, die an den Fugen nicht nur bündige Ebenheit, sondern auch eine gewisse Zugfestigkeit gegen horizontales Auseinanderziehen liefern.

Beanspruchungsklassen

Die Beanspruchungsklassen der Laminatfußböden werden in der EN 13329 geregelt. Sie ermöglichen es, aufgrund von Tests und Erfahrung Laminatfußböden für den jeweils benötigten Zweck zu kaufen, ohne dabei Kenntnisse einzelner Festigkeitskennwerte haben zu müssen.

Bereich Klasse Verwendung
Wohnbereich 21 mäßige Beanspruchung z. B. Schlafzimmer, Gästezimmer, …
22 normale Beanspruchung z. B. Wohn- und Esszimmer, …
23 starke Beanspruchung z. B. Küche, Flur, Arbeitszimmer, …
Gewerblicher Bereich 31 mäßige Beanspruchung z. B. Hotelzimmer, Konferenzraum, …
32 normale Beanspruchung z. B. Büros, Warteräume, …
33 starke Beanspruchung z. B. Großraumbüros, Kaufhäuser, …
34 sehr starke Beanspruchung z. B. Gewerbliche Bereiche mit intensiver Nutzung, …

Pflege

Für den Erhalt des Laminatfußbodens ist es besonders wichtig, dass Wasser oder andere wasserhaltige Flüssigkeiten sofort weggewischt werden. Wenn Wasser in die Verbindungsfugen der verschiedenen Laminatfußbodenteilstücke fließt, können sich die Holzfasern in der Trägerplatte ausdehnen und Beulen und Wellen erzeugen. Diese Beulen lassen sich nicht mehr entfernen, da der Quelldruck des Holzes auch das haltende Gefüge des Klebstoffs zerstört hat.

Die Pflege eines Laminatfußbodens ist recht einfach. Die durch die glatte Oberfläche entstehenden Woll- oder Staubmäuse lassen sich mit dem Staubsauger absaugen, hin und wieder kann man das Laminat mit einem nur leicht feuchten Lappen oder Wischmopp wischen.

Hausstauballergikern kann es gerade in der Winterzeit hilfreich sein, einen kleinen Teppich auszulegen. Hierdurch lagert sich der Staub im Teppich an und wird nicht durch die Wärmezirkulation in der Raumluft verteilt. Der Teppich lässt sich dann außerhalb der Wohnung entstauben.

Meine Arbeit

Showroom